This study first presents an experimental control strategy of photovoltaic (PV) system composed of: PV array, dc-dc power converters, electrolytic storage, and programmable dc electronic load. This control aims to extract maximum power from PV array and manages the power transfer through the dc load, respecting the available storage level. The designed system allows simultaneously the supply of a dc load and the charge or the discharge of the storage during the PV power production. The experimental results obtained with a dSPACE 1103 controller board show that the PV stand-alone system responds within certain limits that appear as soon as one of the storage thresholds is reached: either loss of energy produced, or insufficient energy toward the load. In urban area, it is proposed to overcome these limitations by connecting the utility grid with the PV system while maintaining the priority for self-feeding. The experimental results of this PV semi-isolated system are shown and discussed. For this first approach, the goal was to verify the technical feasibility of the suggested system controls. The final results are energetically relevant.Index Terms-AC-DC power converters, batteries, dc-dc power converters, maximum power point tracking (MPPT), photovoltaic (PV) power system, power grid, power system control.
The photovoltaic (PV) power prediction is necessary for dealing with the grid vulnerability by smart grid messages, and could reduce the negative impact due to the unpredictable power injection into the grid. For a DC microgrid with PVstorage integrated system, this paper aims to present a simple experimental prediction model of a PV panel. The proposed model is based on indoor measurements and allows predicting the maximum output power of the PV panel at given irradiance and cell temperature. Compared to two other models, a linear power model and a single-diode model, experimental tests prove the reliability of the proposed model and validate the method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.