Our data suggest that beta(1)-adrenergic receptor polymorphisms are important determinants of antihypertensive response to metoprolol. In the future, codon 49 and 389 genotypes or beta(1)-adrenergic receptor haplotypes might be used to predict the diastolic blood pressure response to metoprolol in patients with hypertension.
This commentary provides an update on the status of physiologically based pharmacokinetic modeling and simulation at the U.S. Food and Drug Administration's Office of Clinical Pharmacology. Limitations and knowledge gaps in integration of physiologically based pharmacokinetic approach to inform regulatory decision making, as well as the importance of scientific engagement with drug developers who intend to use this approach, are highlighted.
Serious adverse drug reactions (SADRs) are a major cause of morbidity and mortality worldwide. Some SADRs may be predictable, based upon a drug's pharmacodynamic and pharmacokinetic properties. Many, however, appear to be idiosyncratic. Genetic factors may underlie susceptibility to SADRs and the identification of predisposing genotypes may improve patient management through the prospective selection of appropriate candidates. Here we discuss three specific SADRs with an emphasis on genetic risk factors. These SADRs, selected based on wide-sweeping clinical interest, are drug-induced liver injury, statin-induced myotoxicity and drug-induced long QT and torsades de pointes. Key challenges for the discovery of predictive risk alleles for these SADRs are also considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.