Abstract. In June and July 2016 the Dynamics-AerosolChemistry-Cloud Interactions in West Africa (DACCIWA) project organised a major international field campaign in southern West Africa (SWA) including measurements from three inland ground supersites, urban sites in Cotonou and Abidjan, radiosondes, and three research aircraft. A significant range of different weather situations were encountered during this period, including the monsoon onset. The purpose of this paper is to characterise the large-scale setting for the campaign as well as synoptic and mesoscale weather systems affecting the study region in the light of existing conceptual ideas, mainly using objective and subjective identification algorithms based on (re-)analysis and satellite products. In addition, it is shown how the described synoptic variations influence the atmospheric composition over SWA through advection of mineral dust, biomass burning and urban pollution plumes.
<p><strong>Abstract.</strong> In June and July 2016 the Dynamics&#8211;Aerosol&#8211;Chemistry&#8211;Cloud Interactions in West Africa (DACCIWA) project organised a major international field campaign in southern West Africa (SWA) including measurements from three inland ground supersites, urban sites in Cotonou and Abidjan, radiosondes and three research aircraft. A significant range of different weather situations was encountered during this period, including the monsoon onset. The purpose of this paper is to characterise the large-scale setting for the campaign as well as synoptic and mesoscale weather systems affecting the study region in the light of existing conceptual ideas, mainly using objective and subjective identification algorithms based on (re-) analysis and satellite products. In addition, it is shown how the described synoptic variations influence the atmospheric composition over SWA through advection of mineral-dust, biomass-burning and urban-pollution plumes. <br><br> The boreal summer of 2016 was characterised by Pacific La Ni&#241;a, Atlantic El Ni&#241;o and warm eastern Mediterranean conditions, whose competing influences on precipitation led to an overall average rainy season. During the relatively dusty pre-onset Phase 1 (1&#8211;21 June 2016), three westward propagating coherent cyclonic vortices between 4 and 13&#176;&#8201;N modulated winds and rainfall in the Guinea coastal area. The monsoon onset occurred in connection with a marked extratropical trough and cold surge over northern Africa, leading to a breakdown of the Saharan heat low and African easterly jet and a suppression of rainfall. During this period, quasi-stationary low-level vortices associated with the trough transformed into more tropical, propagating disturbances resembling an African easterly wave (AEW). To the east of this system, moist southerlies penetrated deep into the continent. The post-onset Phase 2 (22 June&#8211;20 July 2016) was characterised by a significant increase of low-level cloudiness, unusually dry conditions and strong northeastward dispersion of urban pollution plumes in SWA as well as rainfall modulation by westward propagating AEWs in the Sahel. Around 12&#8211;14 July 2016 an interesting and so-far undocumented cyclonic-anticyclonic vortex couplet crossed SWA. The anticyclonic centre had its origin in the southern hemisphere and transported unusually dry air filled with aged aerosol into the region. During Phase 3 (21&#8211;26 July 2016), a similar vortex couplet slightly farther north created enhanced westerly moisture transports into SWA and extraordinarily wet conditions, accompanied by a deep penetration of the biomass-burning plume from central Africa. Finally, a return to more undisturbed monsoon conditions took place during Phase 4 (27&#8211;31 July 2016). The in-depth synoptic analysis reveals that several significant weather systems during the DACCIWA campaign cannot be attributed unequivocally to any of the tropical waves and disturbances described in the literature, and thus deserve further study.</p>
Climate change is affecting rainfall variability. This paper investigated the June-September (JJAS) rainfall variability using reanalyzed and observed datasets from 1976 to 2015 in Togo. The rotated empirical orthogonal function (REOF) method was used to get the distribution patterns of JJAS rainfall. The Mann-Kendall (MK) statistic was also used to detect temporal trend of the rotated principal component time series (RPCs) that represent the modes of positive loadings. The REOF method has revealed four significant patterns that explained 65.1% of the total variance; the first, the second and the fourth REOF modes exhibit mainly positive loadings, whereas the third exhibits negative loadings. The first mode (REOF1) represents mainly the southern part of Togo; the second mode (REOF2) represents the northern part, the third mode (REOF3) represents the western part and the fourth (REOF4) represents the north-eastern part of Togo. The Mann-Kendall test has revealed an increasing and significant trend of rainfall in the northern region of Togo. In contrast, the trends were not significant in the southern and north-eastern parts of the country. These results form a basis on which adaptation strategies may be taken in this region with high rainfall variability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.