Heterogeneous photocatalysis is considered as an ecofriendly and sustainable approach for addressing energy and environmental persisting issues. Recently, heterogeneous photocatalysts based on covalent organic frameworks (COFs) have gained considerable attention due to their remarkable performance and recyclability in photocatalytic organic transformations, offering a prospective alternative to homogeneous photocatalysts based on precious metal/organic dyes. Herein, we report Hex-Aza-COF-3 as a metal-free, visible-light-activated, and reusable heterogeneous photocatalyst for the synthesis of 2,3-dihydrobenzofurans, as a pharmaceutically relevant structural motif, via the selective oxidative [3+2] cycloaddition of phenols with olefins. Moreover, we demonstrate the synthesis of natural products (±)-conocarpan and (±)-pterocarpin via the [3+2] cycloaddition reaction as an important step using Hex-Aza-COF-3 as a heterogeneous photocatalyst. Interestingly, the presence of phenazine and hexaazatriphenylene as rigid heterocyclic units in Hex-Aza-COF-3 strengthens the covalent linkages, enhances the absorption in the visible region, and narrows the energy band, leading to excellent activity, charge transport, stability, and recyclability in photocatalytic reactions, as evident from theoretical calculations and real-time information on ultrafast spectroscopic measurements.
Mixed-matrix membranes (MMMs) based on luminescent metal−organic frameworks (MOFs) and emissive polymers with the combination of their unique advantages have great potential in separation science, sensing, and light-harvesting applications. Here, we demonstrate MMMs for the field of highspeed visible-light communication (VLC) using a very efficient energy transfer strategy at the interface between a MOF and an emissive polymer. Our steady-state and ultrafast time-resolved experiments, supported by high-level density functional theory calculations, revealed that efficient and ultrafast energy transfer from the luminescent MOF to the luminescent polymer can be achieved. The resultant MMMs exhibited an excellent modulation bandwidth of around 80 MHz, which is higher than those of most wellestablished color-converting phosphors commonly used for optical wireless communication. Interestingly, we found that the efficient energy transfer further improved the light communication data rate from 132 Mb/s of the pure polymer to 215 Mb/s of MMMs. This finding not only showcases the promise of the MMMs for high-speed VLC but also highlights the importance of an efficient and ultrafast energy transfer strategy for the advancement of data rates of optical wireless communication.
Aggregation-induced emission enhancement (AIEE) is a process recently exploited in solid-state materials and organic luminophores, and it is explained by tight-molecular packaging. However, solution-phase AIEE and its formation mechanism have not been widely explored. This work investigated AIEE phenomena in two donor–acceptor–donor-type benzodiazole-based molecules (the organic building block in metal–organic frameworks) with an acetylene and phenyl π-conjugated backbone tapered with a carboxylic acid group at either end. This was done using time-resolved electronic and vibrational spectroscopy in conjunction with time-dependent density functional theory (TD-DFT) calculations. Fluorescence up-conversion spectroscopy and time-correlated single-photon counting conclusively showed an intramolecular charge transfer-driven aggregate emission enhancement. This is shown by a red spectral shift of the emission spectra as well as an increase in the fluorescence lifetime from 746 ps at 1.0 × 10–11 to 2.48 ns at 2.0 × 10–3 M. The TD-DFT calculations showed that a restricted intramolecular rotation mechanism is responsible for the enhanced emission. The femtosecond infrared (IR) transient absorption results directly revealed the structural dynamics of aggregate formation, as evident from the evolution of the CC vibrational marker mode of the acetylene unit upon photoexcitation. Moreover, the IR data clearly indicated that the aggregation process occurred over a time scale of 10 ps, which is consistent with the fluorescence up-conversion results. Interestingly, time-resolved results and DFT calculations clearly demonstrated that both acetylene bonds and the sulfur atom are the key requirements to achieve such a controllable aggregation-induced fluorescence enhancement. The finding of the work not only shows how slight changes in the chemical structure of fluorescent chromophores could make a tremendous change in their optical behavior but also prompts a surge of research into a profound understanding of the mechanistic origins of this phenomenon. This may lead to the discovery of new chemical strategies that aim to synthesize novel chromophores with excellent optical properties for light-harvesting applications.
Aggregation of some chromophores generates very strong fluorescence signals due to the tight molecular packing and highly restricted vibrational motions in the electronically excited states. Such an aggregation-induced emission enhancement enables great strides in biomedical imaging, security screening, sensing, and light communication applications. Here, we realized efficient utilization of a series of aggregation-induced emission luminogens (AIEgens) in X-ray imaging scintillators and optical wireless communication (OWC) technology. Ultrafast time-resolved laser spectroscopic experiments and high-level density functional theory (DFT) calculations clearly demonstrate that a significant increase in the rotational energy barrier in the aggregated state of AIEgens is observed, leading to highly restricted molecular vibrations and suppressed nonradiative processes. AIEgen-based scintillators exhibit a high X-ray imaging resolution of 16.3 lp mm −1 , making them excellent candidates for X-ray radiography and security inspections. In addition, these AIEgens show a broad -3-dB modulation bandwidth of ∼110 MHz and high net data rates of ∼600 Mb/s, demonstrating their high potential for application in the field of high-speed OWC.
Structural modifications to molecular systems that lead to the control of photon emission processes at the interfaces between photoactive materials play a key role in the development of fluorescence sensors, X-ray imaging scintillators, and organic light-emitting diodes (OLEDs). In this work, two donor− acceptor systems were used to explore and reveal the effects of slight changes in chemical structure on interfacial excited-state transfer processes. A thermally activated delayed fluorescence (TADF) molecule was chosen as the molecular acceptor. Meanwhile, two benzoselenadiazole-core MOF linker precursors, Ac-SDZ and SDZ, with the presence and absence of a C�C bridge, respectively, were carefully chosen as energy and/or electron-donor moieties. We found that the SDZ -TADF donor−acceptor system exhibited efficient energy transfer, as evidenced by steady-state and time-resolved laser spectroscopy. Furthermore, our results demonstrated that the Ac-SDZ−TADF system exhibited both interfacial energy and electron transfer processes. Femtosecond-mid-IR (fs-mid-IR) transient absorption measurements revealed that the electron transfer process takes place on the picosecond timescale. Time-dependent density functional theory (TD-DFT) calculations confirmed that photoinduced electron transfer occurred in this system and demonstrated that it takes place from C�C in Ac-SDZ to the central unit of the TADF molecule. This work provides a straightforward way to modulate and tune excited-state energy/charge transfer processes at donor− acceptor interfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.