D-amino acid oxidase (DAO) is a degradative enzyme that is stereospecific for D-amino acids, including D-serine and D-alanine, which are potential coagonists of the N-methyl-D-aspartate (NMDA) receptor. Dysfunction of NMDA receptor-mediated neurotransmission has been implicated in the onset of various mental disorders such as schizophrenia. Hence, a DAO inhibitor that augments the brain levels of D-serine and/or D-alanine and thereby activates NMDA receptor function is expected to be an antipsychotic drug, for instance, in the treatment of schizophrenia. In the search for potent DAO inhibitor(s), a large number of compounds were screened in silico, and several compounds were estimated as candidates. These compounds were then characterized and evaluated as novel DAO inhibitors in vitro. The results reported in this study indicate that some of these compounds are possible lead compounds for the development of a clinically useful DAO inhibitor and have the potential to serve as active site probes to elucidate the structure-function relationships of DAO.
D-Aspartate oxidase (DDO) is a degradative enzyme that is stereospecific for acidic D-amino acids, including D-aspartate, a potential agonist of the N-methyl-D-aspartate (NMDA) receptor. Dysfunction of NMDA receptor-mediated neurotransmission has been implicated in the onset of various mental disorders, such as schizophrenia. Hence, a DDO inhibitor that increases the brain levels of D-aspartate and thereby activates NMDA receptor function is expected to be a useful compound. To search for potent DDO inhibitor(s), a large number of compounds were screened in silico, and several compounds were identified as candidates. They were then characterized and evaluated as novel DDO inhibitors in vitro (e.g., the inhibitor constant value of 5-aminonicotinic acid for human DDO was 3.80 μM). The present results indicate that some of these compounds may serve as lead compounds for the development of a clinically useful DDO inhibitor and as active site probes to elucidate the structure-function relationships of DDO.
DNA containing alternating purine and pyrimidine repeats has the potential to adopt the Z-DNA structure, one of the well-studied structures besides A- and B-DNA. Despite a number of molecular models that have been proposed to explain the mechanism for B→Z transition, there is continued discussion on the mechanism and physiological role of this transition. In this study, we have found that the bis(2-naphthyl)-maleimide-spermine conjugate (3c) exhibits a remarkable ability to cause the B→Z transition of d(CGCGCG)(2) at low salt concentrations. Using isothermal titration calorimetry (ITC) we show that the B→Z transition induced by 3c is both enthalpically and entropically favorable. The ligand might effect the dehydration of B-DNA, which leads to the B→Z transition. Interestingly, an intermediate CD between the B and Z forms was observed in the pH-dependent transition in the presence of the ligand. The unique structure and characteristics of the ligand designed in this investigation will be useful for the study of Z-DNA.
A series of nonfluorinated and fluorinated aryl azides with varied functionality patterns were irradiated in 2,2,2-trifluoroethanol with either a high-pressure or a low-pressure mercury lamp. Interestingly, one of the major products in these reactions was the result of the recombination of anilino and alkyl radicals to form the corresponding hemiaminal compounds. The structure of the recombination products was assigned unambiguously after proton/deuterium exchange experiments followed by MS and MS/MS analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.