The relationship between hardness and solute carbon concentration estimated via electrical resistivity measurement was investigated in as-quenched and tempered martensitic steels containing carbon of 0.3-0.6 mass%. As a result of corelating the amount of hardening due to carbon in solid solution with the solute carbon concentration, by the calculation to subtract precipitation strengthening, grain refinement strengthening, dislocation strengthening, and softening due to retained austenite from the total strengthening, we derived an equation of solid solution strengthening, where the hardening increases proportionally to the 1/2 or 2/3 power of the solute carbon concentration. It was confirmed that the effects of the factors other than solid solution strengthening due to carbon on hardness are relatively small in tempered specimens when the tempering temperature is less than 673 K; therefore, the change in hardness in tempered martensitic steels can be mostly explained by solute carbon concentration regardless of carbon content.
Electrical resistivity of low-carbon martensitic steels was measured to estimate the carbon concentration in solid solution. Since electrical resistivity is influenced not only by solute carbon but also by substitutional elements, lattice defects and second phase, the effects of these factors need to be subtracted from total electrical resistivity, in order to obtain the accurate solute carbon concentration by this method. As a result, the effects of dislocations and grain boundaries were much smaller than that of solute elements, being only 1 -2% of the measured electrical resistivity, in martensitic steel. On the other hand, substitutional elements and retained austenite were found to be significantly effective. By subtracting these effects from the measured value, the change in electrical resistivity due to solute carbon, Δρ sol.C , could be formulated as a function of the carbon concentration in solid solution of martensite, C sol , as follows:Δρ sol.C [mΩmm] = 0.25 × C sol [mass%] The estimated solute carbon concentration was confirmed to correspond to the directly measured value by atom probe tomography.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.