Computer simulations are widely used to study molecular systems, especially in biology. As simulations have greatly increased in scale reaching cellular levels there are now significant challenges in managing, analyzing, and interpreting such data in comparison with experiments that are being discussed. Management challenges revolve around storing and sharing terabyte to petabyte scale data sets whereas the analysis of simulations of highly complex systems will increasingly require automated machine learning and artificial intelligence approaches. The comparison between simulations and experiments is furthermore complicated not just by the complexity of the data but also by difficulties in interpreting experiments for highly heterogeneous systems. As an example, the interpretation of NMR relaxation measurements and comparison with simulations for highly crowded systems is discussed.
Biological macromolecules function in highly crowded cellular environments. The structure and dynamics of proteins and nucleic acids are well characterized in vitro, but in vivo crowding effects remain unclear. Using molecular dynamics simulations of a comprehensive atomistic model cytoplasm we found that protein-protein interactions may destabilize native protein structures, whereas metabolite interactions may induce more compact states due to electrostatic screening. Protein-protein interactions also resulted in significant variations in reduced macromolecular diffusion under crowded conditions, while metabolites exhibited significant two-dimensional surface diffusion and altered protein-ligand binding that may reduce the effective concentration of metabolites and ligands in vivo. Metabolic enzymes showed weak non-specific association in cellular environments attributed to solvation and entropic effects. These effects are expected to have broad implications for the in vivo functioning of biomolecules. This work is a first step towards physically realistic in silico whole-cell models that connect molecular with cellular biology.DOI: http://dx.doi.org/10.7554/eLife.19274.001
For a long time the effect of crowded cellular environment on protein dynamics has been largely ignored. Recent experiments indicate that proteins diffuse much slower in a living cell than in a diluted solution and further studies suggest that the diffusion depends on the local surrounding. Here, detailed insight into how diffusion depends on protein-protein contacts is presented based on extensive all-atom molecular dynamics simulations of concentrated villin head piece solutions. After force field adjustments in the form of increased protein-water interactions to reproduce experimental data, translational and rotational diffusion was analyzed in detail. While internal protein dynamics remained largely unaltered, rotational diffusion was found to slow down more significantly than translational diffusion as the protein concentration increased. The decrease in diffusion is interpreted in terms of a transient formation of protein clusters. These clusters persist on sub-microsecond time scales and follow distributions that increasingly shift toward larger cluster size with increasing protein concentrations. Weighting diffusion coefficients estimated for different clusters extracted from the simulations with the distribution of clusters largely reproduces the overall observed diffusion rates, suggesting that transient cluster formation is a primary cause for a slow-down in diffusion upon crowding with other proteins.
The effects of crowding in biological environments on biomolecular structure, dynamics, and function remain not well understood. Computer simulations of atomistic models of concentrated peptide and protein systems at different levels of complexity are beginning to provide new insights. Crowding, weak interactions with other macromolecules and metabolites, and altered solvent properties within cellular environments appear to remodel the energy landscape of peptides and proteins in significant ways including the possibility of native state destabilization. Crowding is also seen to affect dynamic properties, both conformational dynamics and diffusional properties of macromolecules. Recent simulations that address these questions are reviewed here and discussed in the context of relevant experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.