In this paper, a novel Doherty Power Amplifier DPA based on a 10 W gallium-nitride high-electron-mobility transistor (GaN-HEMT) technology is designed using Advanced Design System (ADS) software. In the design, two different single Power Amplifiers (PAs) are combined using a Wilkinson power divider which is also used to connect the power to the load. The designed DPA operates in the range of 2.0-3.0 GHz and aims to achieve high efficiency, wide bandwidth and high output power for 5G applications. Simulation results showed a 40% fractional bandwidth and more than 44 dBm of saturated output power. In addition, the Power-Added Efficiency (PAE) and Drain-efficiency (Deff) are about 77% and 84%, respectively. A comparison with the other previous works shows enhancement in the maximum large-signal gain (L_S_Gain) in the average of 2.5 dB and an average PAE of about 10%. This improvement can be attributed to the deployment of the power divider/combiner proposed in the design and also the optimization of the components during the design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.