Mycobacterium tuberculosis (Mtb) can persist in hostile intracellular microenvironments evading immune cells and drug treatment. However, the protective cellular niches where Mtb persists remain unclear. We report that Mtb may maintain long-term intracellular viability in a human bone marrow (BM)–derived CD271+/CD45− mesenchymal stem cell (BM-MSC) population in vitro. We also report that Mtb resides in an equivalent population of BM-MSCs in a mouse model of dormant tuberculosis infection. Viable Mtb was detected in CD271+/CD45− BM-MSCs isolated from individuals who had successfully completed months of anti-Mtb drug treatment. These results suggest that CD271+ BM-MSCs may provide a long-term protective intracellular niche in the host in which dormant Mtb can reside.
Mycobacterium tuberculosis (MTB), the causative agent of pulmonary tuberculosis, is difficult to eliminate by antibiotic therapy. We recently identified CD271(+) bone marrow-mesenchymal stem cells (BM-MSCs) as a potential site of MTB persistence after therapy. Herein, we have characterized the potential hypoxic localization of the post-therapy MTB-infected CD271(+) BM-MSCs in both mice and human subjects. We first demonstrate that in a Cornell model of MTB persistence in mice, green fluorescent protein-labeled virulent MTB-strain H37Rv was localized to pimonidazole (an in vivo hypoxia marker) positive CD271(+) BM-MSCs after 90 days of isoniazid and pyrazinamide therapy that rendered animal's lung noninfectious. The recovered CD271(+) BM-MSCs from post-therapy mice, when injected into healthy mice, caused active tuberculosis infection in the animal's lung. Moreover, MTB infection significantly increased the hypoxic phenotype of CD271(+) BM-MSCs. Next, in human subjects, previously treated for pulmonary tuberculosis, the MTB-containing CD271(+) BM-MSCs exhibited high expression of hypoxia-inducible factor 1α and low expression of CD146, a hypoxia down-regulated cell surface marker of human BM-MSCs. These data collectively demonstrate the potential localization of MTB harboring CD271(+) BM-MSCs in the hypoxic niche, a critical microenvironmental factor that is well known to induce the MTB dormancy phenotype.
Natural vaccination against pathogens are known to be achieved by herd-immunity i.e. infected human host provide immunity to the community by spreading the pathogen. Whether, infected human hosts transmit vesicle packed aerosols of pathogen’s antigen for natural vaccination of the community has not yet been considered. We have explored a traditional healing method of aerosol-inoculation against small pox and tuberculosis in the Sualkuchi-Hajo cultural complex of Kamarupa, an ancient Indian region known for tantra-based healing and spirituality. In the aerosol-inoculation method against TB, selected persons with TB (later identified as smear negative TB subject) are encouraged to spread good nigudah in the community by Kirtan chanting; the good Nigudah are thought to be present within bad-nigudah or invisible krimis (tiny flesh eating living being mentioned in ancient India’s medicinal text Caraka Samhita and Atharva Veda). A 15-years of contact TB investigation study, as well as laboratory study of aerosol obtained from smear negative PTB (SN-PTB) subjects led to the identification of good Nigudah as extracellular vesicles (EVs) filled with Mtb-antigen ESAT-6. We then developed a mouse model of aerosol-inoculation using SN-PTB subject derived aerosol EVs, and identified Mtb infected mesenchymal stem cells (MSCs) of the lung as the putative source of the ESAT-6+ EVs. These Mtb infected MSCs reprogram to altruistic stem cell (ASC) phenotype, which then secrete ESAT-6+ EVs to the aerosols; healthy mice receiving the aerosol develop Mtb specific herd immunity. These results expedite our ongoing work on the innate defense mechanism of ASCs against pathogen, and provide a novel mechanism of natural vaccination, where the host extracts appropriate antigens from a pathogen, and then spread it in the community via aerosols.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.