Bitcoin's Lightning Network (LN) is a scalability solution for Bitcoin allowing transactions to be issued with negligible fees and settled instantly at scale. In order to use LN, funds need to be locked in payment channels on the Bitcoin blockchain (Layer-1) for subsequent use in LN (Layer-2). LN is comprised of many payment channels forming a payment channel network. LN's promise is that relatively few payment channels already enable anyone to efficiently, securely and privately route payments across the whole network. In this paper, we quantify the structural properties of LN and argue that LN's current topological properties can be ameliorated in order to improve the security of LN, enabling it to reach its true potential.
Network-level privacy is the Achilles heel of financial privacy in cryptocurrencies. Financial privacy amounts to achieving and maintaining blockchain-and network-level privacy. Blockchain-level privacy recently received substantial attention. Specifically, several privacy-enhancing technologies were proposed and deployed to enhance blockchain-level privacy. On the other hand, network-level privacy, i.e., privacy on the peer-to-peer layer, has seen far less attention and development.In this work, we aim to provide a peer-to-peer network simulator, ethp2psim, that allows researchers to evaluate the privacy guarantees of privacy-enhanced broadcast and message routing algorithms. Our goal is two-fold. First, we want to enable researchers to implement their proposed protocols in our modular simulator framework. Second, our simulator allows researchers to evaluate the privacy guarantees of privacy-enhanced routing algorithms. Finally, ethp2psim can help choose the right protocol parameters for efficient, robust, and private deployment.
Lightning Network (LN) is designed to amend the scalability and privacy issues of Bitcoin. It is a payment channel network where Bitcoin transactions are issued off the blockchain and onion routed through a private payment path with the aim to settle transactions in a faster, cheaper, and more private manner, as they are not recorded in a costly-to-maintain, slow, and public ledger. In this work, we design a traffic simulator to empirically study LN's transaction fees and privacy provisions. The simulator relies only on publicly available data of the network structure and capacities, and generates transactions under assumptions that we attempt to validate based on information spread by certain blog posts of LN node owners.Our findings on the estimated revenue from transaction fees are in line with the widespread opinion that participation is economically irrational for the majority of the large routing nodes who currently hold the network together. Either traffic or transaction fees must increase by orders of magnitude to make payment routing economically viable. We give worst-case estimates for the potential fee increase by assuming strong price competition among the routers. We also estimate how current channel structures and pricing policies respond to a potential increase in traffic, how reduction in locked funds on channels would affect the network, and show examples of nodes who are estimated to operate with economically feasible revenue.Our second set of findings considers privacy. Even if transactions are onion routed, strong statistical evidence on payment source and destination can be inferred, as many transaction paths only consist of a single intermediary by the side effect of LN's small-world nature. Based on our simulation experiments, we (1) quantitatively characterize the privacy shortcomings of current LN operation, and (2) propose a method to inject additional hops in routing paths to demonstrate how privacy can be strengthened with very little additional transactional cost.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.