Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte. Terms of use: Documents inSiem Jan Koopman, (a,c), ‡ André Lucas A particular feature of our approach is that smoothed estimates of the states and the marginal likelihood are obtained directly as an output of the algorithm. Our method provides a computationally efficient alternative to several recently proposed algorithms. We present extensive simulation evidence for stochastic volatility and stochastic intensity models. For our empirical study, we analyse the performance of our method for stock returns and corporate default panel data.JEL classification: C11, C15, C22, C32, C58.
We develop new multi-factor dynamic copula models with time-varying factor loadings and observationdriven dynamics. The new models are highly flexible, scalable to high dimensions, and ensure positivity of covariance and correlation matrices. A closed-form likelihood expression allows for straightforward parameter estimation and likelihood inference. We apply the new model to a large panel of 100 U.S. stocks over the period 2001-2014. The proposed multi-factor structure is much better than existing (single-factor) models at describing stock return dependence dynamics in high-dimensions. The new factor models also improve one-step-ahead copula density forecasts and global minimum variance portfolio performance. Finally, we investigate different mechanisms to allocate firms into groups and find that a simple industry classification outperforms alternatives based on observable risk factors, such as size, value, or momentum.
We investigate high-frequency volatility models for analyzing intradaily tick by tick stock price changes using Bayesian estimation procedures. Our key interest is the extraction of intradaily volatility patterns from high-frequency integer price changes. We account for the discrete nature of the data via two di↵erent approaches: ordered probit models and discrete distributions. We allow for stochastic volatility by modeling the variance as a stochastic function of time, with intraday periodic patterns. We consider distributions with heavy tails to address occurrences of jumps in tick by tick discrete prices changes. In particular, we introduce a dynamic version of the negative binomial di↵erence model with stochastic volatility. For each model we develop a Markov chain Monte Carlo estimation method that takes advantage of auxiliary mixture representations to facilitate the numerical implementation. This new modeling framework is illustrated by means of tick by tick data for two stocks from the NYSE and for di↵erent periods. Di↵erent models are compared with each other based on predictive likelihoods. We find evidence in favour of our preferred dynamic negative binomial di↵erence model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.