Game theory provides a general mathematical background to study the effect of pair interactions and evolutionary rules on the macroscopic behavior of multi-player games where players with a finite number of strategies may represent a wide scale of biological objects, human individuals, or even their associations. In these systems the interactions are characterized by matrices that can be decomposed into elementary matrices (games) and classified into four types. The concept of decomposition helps the identification of potential games and also the evaluation of the potential that plays a crucial role in the determination of the preferred Nash equilibrium, and defines the Boltzmann distribution towards which these systems evolve for suitable types of dynamical rules. This survey draws parallel between the potential games and the kinetic Ising type models which are investigated for a wide scale of connectivity structures. We discuss briefly the applicability of the tools and concepts of statistical physics and thermodynamics. Additionally the general features of ordering phenomena, phase transitions and slow relaxations are outlined and applied to evolutionary games. The discussion extends to games with three or more strategies. Finally we discuss what happens when the system is weakly driven out of the "equilibrium state" by adding non-potential components representing games of cyclic dominance.
Formation and competition of associations are studied in a six-species ecological model where each species has two predators and two prey. Each site of a square lattice is occupied by an individual belonging to one of the six species. The evolution of the spatial distribution of species is governed by iterated invasions between the neighboring predator-prey pairs with species specific rates and by site exchange between the neutral pairs with a probability X . This dynamical rule yields the formation of five associations composed of two or three species with proper spatiotemporal patterns. For large X a cyclic dominance can occur between the three two-species associations whereas one of the two three-species associations prevails in the whole system for low values of X in the final state. Within an intermediate range of X all the five associations coexist due to the fact that cyclic invasions between the two-species associations reduce their resistance temporarily against the invasion of three-species associations.
The structure of probability currents is studied for the dynamical network after consecutive contraction on two-state, nonequilibrium lattice systems. This procedure allows us to investigate the transition rates between configurations on small clusters and highlights some relevant effects of lattice symmetries on the elementary transitions that are responsible for entropy production. A method is suggested to estimate the entropy production for different levels of approximations (cluster sizes) as demonstrated in the two-dimensional contact process with mutation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.