Cellular homeostais, that is normally maintained through autophagy, is disrupted in alcoholic liver disease (ALD). Because autophagy and exosome biogenesis share common elements, we hypothesized that increased exosome production in ALD may be linked to disruption of autophagic function. We found impaired autophagy both in ALD and alcoholic hepatitis (AH) mouse models and human livers with ALD as indicated by increased hepatic p62 and LC3‐II levels. Alcohol reduced autophagy flux in vivo in chloroquine‐treated mice as well as in vitro in hepatocytes and macrophages treated with bafilomycin A. Our results revealed that alcohol targets multiple steps in the autophagy pathway. Alcohol‐related decrease in mechanistic target of rapamycin (mTOR) and Ras homolog enriched in brain (Rheb), that initiate autophagy, correlated with increased Beclin1 and autophagy‐related protein 7 (Atg7), proteins involved in phagophore‐autophagosome formation, in ALD. We found that alcohol disrupted autophagy function at the lysosomal level through decreased lysosomal‐associated membrane protein 1 (LAMP1) and lysosomal‐associated membrane protein 2 (LAMP2) in livers with ALD. We identified that micro‐RNA 155 (miR‐155), that is increased by alcohol, targets mTOR, Rheb, LAMP1, and LAMP2 in the authophagy pathway. Consistent with this, miR‐155‐deficient mice were protected from alcohol‐induced disruption of autophagy and showed attenuated exosome production. Mechanistically, down‐regulation of LAMP1 or LAMP2 increased exosome release in hepatocytes and macrophages in the presence and absence of alcohol. These results suggested that the alcohol‐induced increase in exosome production was linked to disruption of autophagy and impaired autophagosome and lysosome function. Conclusion: Alcohol affects multiple genes in the autophagy pathway and impairs autophagic flux at the lysosome level in ALD. Inhibition of LAMP1 and LAMP2 promotes exosome release in ALD. We identified miR‐155 as a mediator of alcohol‐related regulation of autophagy and exosome production in hepatocytes and macrophages.
Disease severity in alcoholic liver disease (ALD) is associated with a significant presence of neutrophils (a type of immune cell) in the liver. It remains unknown how alcohol affects the capacity of neutrophils to control infection, a major hallmark of ALD. We found that binge alcohol drinking impaired important strategies used by neutrophils to contain and resolve infection, resulting in increased liver injury during ALD.
Our study indicates a specific protein signature of ALD EVs and demonstrates a functional role of circulating EVs containing heat shock protein 90 in mediating KC/MØ activation in the liver. (Hepatology 2018;67:1986-2000).
Inflammation promotes the progression of alcoholic liver disease. Alcohol sensitizes KCs to gut-derived endotoxin (LPS); however, signaling pathways that perpetuate inflammation in alcoholic liver disease are only partially understood. We found that chronic alcohol feeding in mice induced miR-155, an inflammatory miRNA in isolated KCs. We hypothesized that miR-155 might increase the responsiveness of KCs to LPS via targeting the negative regulators of LPS signaling. Our results revealed that KCs that were isolated from alcohol-fed mice showed a decrease in IRAK-M, SHIP1, and PU.1, and an increase in TNF-α levels. This was specific to KCs, as no significant differences were observed in these genes in hepatocytes. We found a causal effect of miR-155 deficiency on LPS responsiveness, as KCs that were isolated from miR-155 KO mice showed a greater induction of IRAK-M, SHIP1, and suppressor of cytokine signaling 1 after LPS treatment. C/EBPβ, a validated miR-155 target, stimulates IL-10 transcription. We found a higher induction of C/EBPβ and IL-10 in KCs that were isolated from miR-155 KO mice after LPS treatment. Gain- and loss-of-function studies affirmed that alcohol-induced miR-155 directly regulates IRAK-M, SHIP1, suppressor of cytokine signaling 1, and C/EBPβ, as miR-155 inhibition increased and miR-155 overexpression decreased these genes in LPS or alcohol-pretreated wild-type KCs. HDAC11, a regulator of IL-10, was significantly increased and IL-10 was decreased in KCs that were isolated from alcohol-fed mice. Functionally, knockdown of HDAC11 with small interfering RNA resulted in an IL-10 increase in LPS or alcohol-pretreated Mϕ. We found that acetaldehyde and NF-κB pathways regulate HDAC11 levels. Collectively, our results indicate that the alcohol-induced responsiveness of KCs to LPS, in part, is governed by miR-155 and HDAC11.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.