The purpose of this paper is 2-fold. First, we present several extensions to the ONIOM(QM:MM) scheme. In its original formulation, the electrostatic interaction between the regions is included at the classical level. Here we present the extension to electronic embedding. We show how the behavior of ONIOM with electronic embedding can be more stable than QM/MM with electronic embedding. We also investigate the link atom correction, which is implicit in ONIOM but not in QM/MM. Second, we demonstrate some of the practical aspects of ONIOM(QM:MM) calculations. Specifically, we show that the potential surface can be discontinuous when there is bond breaking and forming closer than three bonds from the MM region.
Factor XIII (FXIII) is unique among clotting factors for a number of reasons: 1) it is a protransglutaminase, which becomes activated in the last stage of coagulation; 2) it works on an insoluble substrate; 3) its potentially active subunit is also present in the cytoplasm of platelets, monocytes, monocyte-derived macrophages, dendritic cells, chondrocytes, osteoblasts, and osteocytes; and 4) in addition to its contribution to hemostasis, it has multiple extra- and intracellular functions. This review gives a general overview on the structure and activation of FXIII as well as on the biochemical function and downregulation of activated FXIII with emphasis on new developments in the last decade. New aspects of the traditional functions of FXIII, stabilization of fibrin clot, and protection of fibrin against fibrinolysis are summarized. The role of FXIII in maintaining pregnancy, its contribution to the wound healing process, and its proangiogenic function are reviewed in details. Special attention is given to new, less explored, but promising fields of FXIII research that include inhibition of vascular permeability, cardioprotection, and its role in cartilage and bone development. FXIII is also considered as an intracellular enzyme; a separate section is devoted to its intracellular activation, intracellular action, and involvement in platelet, monocyte/macrophage, and dendritic cell functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.