Heterochiral homo-oligomers with alternating backbone configurations were constructed by using the different enantiomers of the cis- and trans-2-aminocyclopentanecarboxylic acid (ACPC) monomers. Molecular modeling and the spectroscopic techniques (NMR, ECD, and VCD) unequivocally proved that the alternating heterochiral cis-ACPC sequences form an H10/12 helix, where extra stabilization can be achieved via the cyclic side chains. The ECD and TEM measurements, together with molecular modeling, revealed that the alternating heterochiral trans-ACPC oligomers tend to attain a polar-strand secondary structure in solution, which can self-assemble into nanostructured fibrils. The observations indicate that coverage of all the possible secondary structures (various helix types and strand-mimicking conformations) can be attained with the help of cyclic beta-amino acid diastereomers. A relationship has been established between the backbone chirality pattern and the prevailing secondary structure, which underlines the role of stereochemical control in the beta-peptide secondary structure design and may contribute to future biological applications.
Thermal decomposition of citric acid is one of the most common synthesis methods for fluorescent carbon dots; the reaction pathway is, however, quite complex and the details are still far from being understood. For instance, several intermediates form during the process and they also give rise to fluorescent species. In the present work, the formation of fluorescent C‐dots from citric acid has been studied as a function of reaction time by coupling infrared analysis, X‐ray photoelectron spectroscopy, liquid chromatography/mass spectroscopy (LC/MS) with the change of the optical properties, absorption and emission. The reaction intermediates, which have been identified at different stages, produce two main emissive species, in the green and blue, as also indicated by the decay time analysis. C‐dots formed from the intermediates have also been synthesised by thermal decomposition, which gave an emission maximum around 450 nm. The citric acid C‐dots in water show short temporal stability, but their functionalisation with 3‐aminopropyltriethoxysilane reduces the quenching. The understanding of the citric acid thermal decomposition reaction is expected to improve the control and reproducibility of C‐dots synthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.