The Consensus Constrained TOPology prediction (CCTOP; http://cctop.enzim.ttk.mta.hu) server is a web-based application providing transmembrane topology prediction. In addition to utilizing 10 different state-of-the-art topology prediction methods, the CCTOP server incorporates topology information from existing experimental and computational sources available in the PDBTM, TOPDB and TOPDOM databases using the probabilistic framework of hidden Markov model. The server provides the option to precede the topology prediction with signal peptide prediction and transmembrane-globular protein discrimination. The initial result can be recalculated by (de)selecting any of the prediction methods or mapped experiments or by adding user specified constraints. CCTOP showed superior performance to existing approaches. The reliability of each prediction is also calculated, which correlates with the accuracy of the per protein topology prediction. The prediction results and the collected experimental information are visualized on the CCTOP home page and can be downloaded in XML format. Programmable access of the CCTOP server is also available, and an example of client-side script is provided.
BackgroundTransmembrane proteins have important roles in cells, as they are involved in energy production, signal transduction, cell-cell interaction, cell-cell communication and more. In human cells, they are frequently targets for pharmaceuticals; therefore, knowledge about their properties and structure is crucial. Topology of transmembrane proteins provide a low resolution structural information, which can be a starting point for either laboratory experiments or modelling their 3D structures.ResultsHere, we present a database of the human α-helical transmembrane proteome, including the predicted and/or experimentally established topology of each transmembrane protein, together with the reliability of the prediction. In order to distinguish transmembrane proteins in the proteome as well as for topology prediction, we used a newly developed consensus method (CCTOP) that incorporates recent state of the art methods, with tested accuracies on a novel human benchmark protein set. CCTOP utilizes all available structure and topology data as well as bioinformatical evidences for topology prediction in a probabilistic framework provided by the hidden Markov model. This method shows the highest accuracy (98.5 % for discrinimating between transmembrane and non-transmembrane proteins and 84 % for per protein topology prediction) among the dozen tested topology prediction methods. Analysis of the human proteome with the CCTOP indicates that it contains 4998 (26 %) transmembrane proteins. Besides predicting topology, reliability of the predictions is estimated as well, and it is demonstrated that the per protein prediction accuracies of more than 60 % of the predictions are over 98 % on the benchmark sets and most probably on the predicted human transmembrane proteome too.ConclusionsHere, we present the most accurate prediction of the human transmembrane proteome together with the experimental topology data. These data, as well as various statistics about the human transmembrane proteins and their topologies can be downloaded from and can be visualized at the website of the human transmembrane proteome (http://htp.enzim.hu).ReviewersThis article was reviewed by Dr. Sandor Pongor, Dr. Michael Galperin and Dr. Pascale Gaudet (nominated by Dr Michael Galperin).Electronic supplementary materialThe online version of this article (doi:10.1186/s13062-015-0061-x) contains supplementary material, which is available to authorized users.
MotivationIt is commonplace that intrinsically disordered proteins (IDPs) are involved in crucial interactions in the living cell. However, the study of protein complexes formed exclusively by IDPs is hindered by the lack of data and such analyses remain sporadic. Systematic studies benefited other types of protein–protein interactions paving a way from basic science to therapeutics; yet these efforts require reliable datasets that are currently lacking for synergistically folding complexes of IDPs.ResultsHere we present the Mutual Folding Induced by Binding (MFIB) database, the first systematic collection of complexes formed exclusively by IDPs. MFIB contains an order of magnitude more data than any dataset used in corresponding studies and offers a wide coverage of known IDP complexes in terms of flexibility, oligomeric composition and protein function from all domains of life. The included complexes are grouped using a hierarchical classification and are complemented with structural and functional annotations. MFIB is backed by a firm development team and infrastructure, and together with possible future community collaboration it will provide the cornerstone for structural and functional studies of IDP complexes.Availability and implementationMFIB is freely accessible at http://mfib.enzim.ttk.mta.hu/. The MFIB application is hosted by Apache web server and was implemented in PHP. To enrich querying features and to enhance backend performance a MySQL database was also created.Supplementary information Supplementary data are available at Bioinformatics online.
The Topology Data Bank of Transmembrane Proteins (TOPDB, http://topdb.enzim.ttk.mta.hu) contains experimentally determined topology data of transmembrane proteins. Recently, we have updated TOPDB from several sources and utilized a newly developed topology prediction algorithm to determine the most reliable topology using the results of experiments as constraints. In addition to collecting the experimentally determined topology data published in the last couple of years, we gathered topographies defined by the TMDET algorithm using 3D structures from the PDBTM. Results of global topology analysis of various organisms as well as topology data generated by high throughput techniques, like the sequential positions of N- or O-glycosylations were incorporated into the TOPDB database. Moreover, a new algorithm was developed to integrate scattered topology data from various publicly available databases and a new method was introduced to measure the reliability of predicted topologies. We show that reliability values highly correlate with the per protein topology accuracy of the utilized prediction method. Altogether, more than 52 000 new topology data and more than 2600 new transmembrane proteins have been collected since the last public release of the TOPDB database.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.