This review summarizes the current understanding of adsorption of polyelectrolytes to oppositely charged solid substrates, the resulting interaction forces between such substrates, and consequences for colloidal particle aggregation. The following conclusions can be reached based on experimental findings. Polyelectrolytes adsorb to oppositely charged solid substrates irreversibly up to saturation, whereby loose and thin monolayers are formed. The adsorbed polyelectrolytes normally carry a substantial amount of charge, which leads to a charge reversal. Frequently, the adsorbed films are laterally heterogeneous. With increasing salt levels, the adsorbed mass increases leading to thicker and more homogeneous films. Interaction forces between surfaces coated with saturated polyelectrolyte layers are governed at low salt levels by repulsive electric double layer interactions, and particle suspensions are stable under these conditions. At appropriately high salt levels, the forces become attractive, principally due to van der Waals interactions, but eventually also through other forces, and suspensions become unstable. This situation can be rationalized with the classical theory of Derjaguin, Landau, Verwey, and Overbeek (DLVO). Due to the irreversible nature of the adsorption process, stable unsaturated layers form in colloidal particle suspensions at lower polyelectrolyte doses. An unsaturated polyelectrolyte layer can neutralize the overall particle surface charge. Away from the charge reversal point, electric double layer forces are dominant and particle suspensions are stable. As the charge reversal point is approached, attractive van der Waals forces become important, and particle suspensions become unstable. This behaviour is again in line with the DLVO theory, which may even apply quantitatively, provided the polyelectrolyte films are sufficiently laterally homogeneous. For heterogeneous films, additional attractive patch-charge interactions may become important. Depletion interactions may also lead to attractive forces and suspension destabilization, but such interactions become important only at high polyelectrolyte concentrations.
Ion specific effects of monovalent salts on charging and aggregation for two types of polystyrene latex particles were investigated by electrophoresis and time-resolved light scattering. The chemical composition of the electrolytes was systematically varied in the experiments. Accordingly, NaH2PO4, NaF, NaCl, NaBr, NaNO3, and NaSCN were used to vary the anions and N(CH3)4Cl, NH4Cl, CsCl, KCl, NaCl, and LiCl for the cations. The salt concentration dependence of the electrophoretic mobilities indicates that the surface charge was screened by the counterions when their concentrations increased. For the SCN(-) ions, adsorption on positively charged particles leads to charge reversal. The aggregation rates are small at low electrolyte concentrations indicating stable dispersions under these conditions, and they increase with the salt concentration. When viscosity corrections are taken into account, no ion specific effects in the fast aggregation regime can be established. The slow and fast aggregation regimes are separated by the critical coagulation concentration (CCC). Within the experimental error, the CCCs are the same in systems containing different co-ions but the same counterions, with the exception of ammonium salts. However, the variation of counterions leads to different CCC values due to specific interaction of the counterions with the surface. These values follow the Hofmeister series for negatively charged sulfate latex particles, while the reversed order was observed for positively charged amidine latex. Comparison between experimental CCCs and those calculated by the theory of Derjaguin, Landau, Verwey, and Owerbeek reveals that variations in the surface charge due to ionic adsorption are mainly responsible for the ion specific effects in the aggregation process.
Interactions involving charged particles in the presence of multivalent ions are relevant in wide-range of phenomena, including condensation of nucleic acids, cement hardening, or water treatment. Here, we study such interactions by combining direct force measurements with atomic force microscopy (AFM) and aggregation studies with time-resolved light scattering for particles originating from the same colloidal suspension for the first time. Classical DLVO theory is found to be only applicable for monovalent and divalent ions. For ions of higher valence, charge inversion and additional non-DLVO attractive forces are observed. These attractive forces can be attributed to surface charge heterogeneities, which leads to stability ratios that are calculated from direct force measurements to be higher than the experimental ones. Ion-ion correlations are equally important as they induce the charge inversion in the presence of trivalent or tetravalent ions, and they enhance the surface charge heterogeneities. Such heterogeneities therefore play an essential role in controlling interactions in particle suspensions containing multivalent ions.
Positively charged layered double hydroxide particles composed of Mg(2+) and Al(3+) layer-forming cations and NO3(-) charge compensating anions (MgAl-NO3-LDH) were synthesized and the colloidal stability of their aqueous suspensions was investigated in the presence of inorganic anions of different charges. The formation of the layered structure was confirmed by X-ray diffraction, while the charging and aggregation properties were explored by electrophoresis and light scattering. The monovalent anions adsorb on the oppositely charged surface to a different extent according to their hydration state leading to the Cl(-) > NO3(-) > SCN(-) > HCO3(-) order in surface charge densities. The ions on the right side of the series induce the aggregation of MgAl-NO3-LDH particles at lower concentrations, whereas in the presence of the left ones, the suspensions are stable even at higher salt levels. The adsorption of multivalent anions gave rise to charge neutralization and charge reversal at appropriate concentrations. For some di, tri and tetravalent ions, charge reversal resulted in restabilization of the suspensions in the intermediate salt concentration regime. Stable samples were also observed at low salt levels. Particle aggregation was fast near the charge neutralization point and at high concentrations. These results, which evidence the colloidal stability of MgAl-NO3-LDH in the presence of various anions, are of prime fundamental interest. These are also critical for applications to develop stable suspensions of primary particles for water purification processes, with the aim of the removal of similar anions by ion exchange.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.