Transient Receptor Potential Ankyrin 1 (TRPA1) channels are localized on sensory nerves and several non-neural cells, but data on their functional significance are contradictory. We analysed the presence and alterations of TRPA1 in comparison with TRP Vanilloid 1 (TRPV1) at mRNA and protein levels in human and mouse intact and inflamed colons. The role of TRPA1 in a colitis model was investigated using gene-deficient mice. TRPA1 and TRPV1 expressions were investigated in human colon biopsies of healthy subjects and patients with inflammatory bowel diseases (IBD: ulcerative colitis, Crohn's disease) with quantitative PCR and immunohistochemistry. Mouse colitis was induced by oral 2% dextran-sulphate (DSS) for 10 days. For investigating the functions of TRPA1, Disease Activity Index (weight loss, stool consistency, blood content) was determined in C57BL/6-based Trpa1-deficient (knockout: KO) and wildtype (WT) mice. Sensory neuropeptides, their receptors, and inflammatory cytokines/chemokines were determined with qPCR or Luminex. In human and mouse colons TRPA1 and TRPV1 are located on epithelial cells, macrophages, enteric ganglia. Significant upregulation of TRPA1 mRNA was detected in inflamed samples. In Trpa1 KO mice, Disease Activity Index was significantly higher compared to WTs. It could be explained by the greater levels of substance P, neurokinins A and B, neurokinin 1 receptor, pituitary adenylate-cyclase activating polypeptide, vasoactive intestinal polypeptide, and also interleukin-1beta, macrophage chemoattractant protein-1, monokine induced by gamma interferon-1, tumor necrosis factor-alpha and B-lymphocyte chemoattractant in the distal colon. TRPA1 is upregulated in colitis and its activation exerts protective roles by decreasing the expressions of several proinflammatory neuropeptides, cytokines and chemokines.
The aim of this study was to investigate the involvement of transient receptor potential vanilloid 1 (TRPV1) receptors in oral dextran sulfate sodium-induced (DSS) colitis using TRPV1 knockout mice and their wild-type C57BL/6 counterparts. DSS (2% or 5%) was administered orally ad libitum for 7 days; the controls received tap water. Animal weight, stool consistency, and blood content were scored every day to calculate the disease activity index (DAI). After sacrificing the mice on day 7, the colons were cut into three equal segments (proximal, intermediate, and distal) for histology, myeloperoxidase (MPO), and cytokine measurements. In the 2% DSS-treated group, the lack of TRPV1 receptors decreased the DAI. Each colon segment of wild-type animals showed more than two-fold increase of MPO activity and more severe histological changes compared to the knockouts. This difference was not observed in case of 5% DSS, when extremely severe inflammation occurred in both groups. IL-1beta production was not altered by the absence of TRPV1. In conclusion, activation of TRPV1 channels enhances the clinical symptoms, histopathological changes, and neutrophil accumulation induced by 2% DSS. Elucidating the modulator role of TRPV1 channels in inflammatory bowel diseases may contribute to the development of novel anti-inflammatory drugs for their therapy.
The Transient Receptor Potential Ankyrin 1 (TRPA1) cation channel expressed on capsaicin-sensitive afferents, immune and endothelial cells is activated by inflammatory mediators and exogenous irritants, e.g., endotoxins, nicotine, crotonaldehyde and acrolein. We investigated its involvement in acute and chronic pulmonary inflammation using Trpa1 gene-deleted (Trpa1−/−) mice. Acute pneumonitis was evoked by intranasal Escherichia coli endotoxin (lipopolysaccharide: LPS) administration, chronic bronchitis by daily cigarette smoke exposure (CSE) for 4 months. Frequency, peak inspiratory/expiratory flows, minute ventilation determined by unrestrained whole-body plethysmography were significantly greater, while tidal volume, inspiratory/expiratory/relaxation times were smaller in Trpa1−/− mice. LPS-induced bronchial hyperreactivity, myeloperoxidase activity, frequency-decrease were significantly greater in Trpa1−/− mice. CSE significantly decreased tidal volume, minute ventilation, peak inspiratory/expiratory flows in wildtypes, but not in Trpa1−/− mice. CSE remarkably increased the mean linear intercept (histopathology), as an emphysema indicator after 2 months in wildtypes, but only after 4 months in Trpa1−/− mice. Semiquantitative histopathological scores were not different between strains in either models. TRPA1 has a complex role in basal airway function regulation and inflammatory mechanisms. It protects against LPS-induced acute pneumonitis and hyperresponsiveness, but is required for CSE-evoked emphysema and respiratory deterioration. Further research is needed to determine TRPA1 as a potential pharmacological target in the lung.
Cigarette smoke-triggered inflammatory cascades and consequent tissue damage are the main causes of chronic obstructive pulmonary disease (COPD). There is no effective therapy and the key mediators of COPD are not identified due to the lack of translational animal models with complex characterization. This integrative chronic study investigated cardiopulmonary pathophysiological alterations and mechanisms with functional, morphological and biochemical techniques in a 6-month-long cigarette smoke exposure mouse model. Some respiratory alterations characteristic of emphysema (decreased airway resistance: Rl; end-expiratory work and pause: EEW, EEP; expiration time: Te; increased tidal mid-expiratory flow: EF50) were detected in anaesthetized C57BL/6 mice, unrestrained plethysmography did not show changes. Typical histopathological signs were peribronchial/perivascular (PB/PV) edema at month 1, neutrophil/macrophage infiltration at month 2, interstitial leukocyte accumulation at months 3-4, and emphysema/atelectasis at months 5-6 quantified by mean linear intercept measurement. Emphysema was proven by micro-CT quantification. Leukocyte number in the bronchoalveolar lavage at month 2 and lung matrix metalloproteinases-2 and 9 (MMP-2/MMP-9) activities in months 5-6 significantly increased. Smoking triggered complex cytokine profile change in the lung with one characteristic inflammatory peak of C5a, interleukin-1α and its receptor antagonist (IL-1α, IL-1ra), monokine induced by gamma interferon (MIG), macrophage colony-stimulating factor (M-CSF), tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) at months 2-3, and another peak of interferon-γ (IFN-γ), IL-4, 7, 13, 17, 27 related to tissue destruction. Transient systolic and diastolic ventricular dysfunction developed after 1-2 months shown by significantly decreased ejection fraction (EF%) and deceleration time, respectively. These parameters together with the tricuspid annular plane systolic excursion (TAPSE) decreased again after 5-6 months. Soluble intercellular adhesion molecule-1 (sICAM-1) significantly increased in the heart homogenates at month 6, while other inflammatory cytokines were undetectable. This is the first study demonstrating smoking duration-dependent, complex cardiopulmonary alterations characteristic to COPD, in which inflammatory cytokine cascades and MMP-2/9 might be responsible for pulmonary destruction and sICAM-1 for heart dysfunction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.