Three-class brain tumor classification becomes a contemporary research task due to the distinct characteristics of tumors. The existing proposals employ deep neural networks for the three-class classification. However, achieving high accuracy is still an endless challenge in brain image classification. We have proposed a deep dense inception residual network for three-class brain tumor classification. We have customized the output layer of Inception ResNet v2 with a deep dense network and a softmax layer. The deep dense network has improved the classification accuracy of the proposed model. The proposed model has been evaluated using key performance metrics on a publicly available brain tumor image dataset having 3064 images. Our proposed model outperforms the existing model with a mean accuracy of 99.69%. Further, similar performance has been obtained on noisy data.
A newly emerged coronavirus disease affects the social and economical life of the world. This virus mainly infects the respiratory system and spreads with airborne communication. Several countries witness the serious consequences of the COVID-19 pandemic. Early detection of COVID-19 infection is the critical step to survive a patient from death. The chest radiography examination is the fast and cost-effective way for COVID-19 detection. Several researchers have been motivated to automate COVID-19 detection and diagnosis process using chest x-ray images. However, existing models employ deep networks and are suffering from high training time. This work presents transfer learning and residual separable convolution block for COVID-19 detection. The proposed model utilizes pre-trained MobileNet for binary image classification. The proposed residual separable convolution block has improved the performance of basic MobileNet. Two publicly available datasets COVID5K, and COVIDRD have considered for the evaluation of the proposed model. Our proposed model exhibits superior performance than existing state-of-art and pre-trained models with 99% accuracy on both datasets. We have achieved similar performance on noisy datasets. Moreover, the proposed model outperforms existing pre-trained models with less training time and competitive performance than basic MobileNet. Further, our model is suitable for mobile applications as it uses fewer parameters and lesser training time
Evolution of digital Health-care Information System established Medical Image Security as the new contemporary research area. Most of the researchers used either image watermarking or image encryption to address medical image security. However, very few proposals focused on both issues. This paper has implemented a Fast Medial Image Security algorithm for color images that uses both watermarking and encryption of each color channel. The proposed method starts with embedding of a smoothened key image (K) and patient information over the original image (I) to generate a watermarked image (W). Then, each color channel of the watermarked image (W) is encrypted separately to produce an encrypted image (E) using the same smoothened key image (K). This image can be transmitted over the public network and the original image (I) can be achieved using decryption algorithm followed by de-watermarking using the same key image (K) at the receiver. Qualitative and quantitative results of the proposed method show good performance when compared with the existing method with high Mean, PSNR and Entropy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.