OBJECTIVETo evaluate the efficacy of a portable, wearable, wireless artificial pancreas system (the Diabetes Assistant [DiAs] running the Unified Safety System) on glucose control at home in overnight-only and 24/7 closed-loop control (CLC) modes in patients with type 1 diabetes.RESEARCH DESIGN AND METHODSAt six clinical centers in four countries, 30 participants 18–66 years old with type 1 diabetes (43% female, 96% non-Hispanic white, median type 1 diabetes duration 19 years, median A1C 7.3%) completed the study. The protocol included a 2-week baseline sensor-augmented pump (SAP) period followed by 2 weeks of overnight-only CLC and 2 weeks of 24/7 CLC at home. Glucose control during CLC was compared with the baseline SAP.RESULTSGlycemic control parameters for overnight-only CLC were improved during the nighttime period compared with baseline for hypoglycemia (time <70 mg/dL, primary end point median 1.1% vs. 3.0%; P < 0.001), time in target (70–180 mg/dL: 75% vs. 61%; P < 0.001), and glucose variability (coefficient of variation: 30% vs. 36%; P < 0.001). Similar improvements for day/night combined were observed with 24/7 CLC compared with baseline: 1.7% vs. 4.1%, P < 0.001; 73% vs. 65%, P < 0.001; and 34% vs. 38%, P < 0.001, respectively.CONCLUSIONSCLC running on a smartphone (DiAs) in the home environment was safe and effective. Overnight-only CLC reduced hypoglycemia and increased time in range overnight and increased time in range during the day; 24/7 CLC reduced hypoglycemia and increased time in range both overnight and during the day. Compared with overnight-only CLC, 24/7 CLC provided additional hypoglycemia protection during the day.
In this paper, we study optimal control problems of spiking neurons whose dynamics are described by a phase model. We design minimum-power current stimuli (controls) that lead to targeted spiking times. In particular, we consider bounded control amplitude and characterize the range of possible spiking times determined by the bound, which can be chosen sufficiently small within the range where the phase model is valid. We show that for a given bound the corresponding feasible spiking times are optimally achieved by piecewise continuous controls. We present analytic expressions with numerical simulations of the minimum-power stimuli for several phase models. We demonstrate the applicability of our method with an experimentally determined phase response curve.
OBJECTIVEArtificial pancreas (AP) systems are best positioned for optimal treatment of type 1 diabetes (T1D) and are currently being tested in outpatient clinical trials. Our consortium developed and tested a novel adaptive AP in an outpatient, single-arm, uncontrolled multicenter clinical trial lasting 12 weeks.RESEARCH DESIGN AND METHODSThirty adults with T1D completed a continuous glucose monitor (CGM)-augmented 1-week sensor-augmented pump (SAP) period. After the AP was started, basal insulin delivery settings used by the AP for initialization were adapted weekly, and carbohydrate ratios were adapted every 4 weeks by an algorithm running on a cloud-based server, with automatic data upload from devices. Adaptations were reviewed by expert study clinicians and patients. The primary end point was change in hemoglobin A1c (HbA1c). Outcomes are reported adhering to consensus recommendations on reporting of AP trials.RESULTSTwenty-nine patients completed the trial. HbA1c, 7.0 ± 0.8% at the start of AP use, improved to 6.7 ± 0.6% after 12 weeks (−0.3, 95% CI −0.5 to −0.2, P < 0.001). Compared with the SAP run-in, CGM time spent in the hypoglycemic range improved during the day from 5.0 to 1.9% (−3.1, 95% CI −4.1 to −2.1, P < 0.001) and overnight from 4.1 to 1.1% (−3.1, 95% CI −4.2 to −1.9, P < 0.001). Whereas carbohydrate ratios were adapted to a larger extent initially with minimal changes thereafter, basal insulin was adapted throughout. Approximately 10% of adaptation recommendations were manually overridden. There were no protocol-related serious adverse events.CONCLUSIONSUse of our novel adaptive AP yielded significant reductions in HbA1c and hypoglycemia.
Synchronization of oscillations is a phenomenon prevalent in natural, social, and engineering systems. Controlling synchronization of oscillating systems is motivated by a wide range of applications from neurological treatment of Parkinson's disease to the design of neurocomputers. In this article, we study the control of an ensemble of uncoupled neuron oscillators described by phase models. We examine controllability of such a neuron ensemble for various phase models and, furthermore, study the related optimal control problems. In particular, by employing Pontryagin's maximum principle, we analytically derive optimal controls for spiking single-and two-neuron systems, and analyze the applicability of the latter to an ensemble system. Finally, we present a robust computational method for optimal control of spiking neurons based on pseudospectral approximations. The methodology developed here is universal to the control of general nonlinear phase oscillators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.