Merchant-owned charging stations will replace gasoline stations in the near future. As charging times of electric vehicles (EV) may be significant, without optimization, customers will wait to get charged without knowing the actual period of charging. In this thesis, two optimal scheduling methods for charging electric vehicles were developed for merchant-owned charging facilities, the first with a single charger and the second with multiple chargers. In the mathematical model for the single merchant-owned charging station, the problem is formulated as a hybrid nonlinear optimization model and solved using a backward recursive algorithm with nonlinear optimization solvers. As for a single charger, a hybrid system framework was used to capture the tradeoff between demand charges and speed of charging. For the merchant-owned multiple chargers case, the problem is formulated as a mixed integer linear optimization challenge with three-dimensional matrices characterizing the solution space and was solved using the MOSEK optimization toolbox in MATLAB. The proposed algorithms have been analyzed for different penalty factors which were imposed on total waiting time of each EV. Final results are analyzed and discussed.
Merchant-owned charging stations will replace gasoline stations in the near future. As charging times of electric vehicles (EV) may be significant, without optimization, customers will wait to get charged without knowing the actual period of charging. In this thesis, two optimal scheduling methods for charging electric vehicles were developed for merchant-owned charging facilities, the first with a single charger and the second with multiple chargers. In the mathematical model for the single merchant-owned charging station, the problem is formulated as a hybrid nonlinear optimization model and solved using a backward recursive algorithm with nonlinear optimization solvers. As for a single charger, a hybrid system framework was used to capture the tradeoff between demand charges and speed of charging. For the merchant-owned multiple chargers case, the problem is formulated as a mixed integer linear optimization challenge with three-dimensional matrices characterizing the solution space and was solved using the MOSEK optimization toolbox in MATLAB. The proposed algorithms have been analyzed for different penalty factors which were imposed on total waiting time of each EV. Final results are analyzed and discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.