Muscarinic agonists acting on bovine tracheal smooth muscle (BTSM) induce two separate cGMP signals, one at 20 sec associated with NO-sensitive-soluble-guanylyl-cyclase (NO-sGC) and another at 60 sec, linked to natriuretic-peptide-GC. The 20-sec-cGMP novel cascade starts with mAChRs, via unknown components, activates an NO-sGC. To unravel this cascade, in crude membranes isolated from intact BTSM strips exposed to muscarinic agonists, we detected GC activities increments at 20 sec and 60 sec. The 20-sec-GC is a NO-sensitive-GC, identified as alpha(1)beta(1)-heterodimer. In reconstitution experiments with purified plasma membranes and cytosol, muscarinic agonists induced an NO-sGC migration in a dose-dependent manner, being inhibited by muscarinic antagonists displaying an M(2)AChR profile and blocked by PTX, suggesting the involvement of G(o)/G(i) proteins. The NO-sGC related to migration was isolated and identified as an alpha(1)beta(1)-heterodimer. This work shows that muscarinic agonists in BTSM induce a massive and selective alpha(1)beta(1)-NO-sGC migration from cytoplasm to plasma membranes being responsible for the 20-sec-cGMP signal.
Muscarinic agonists induce the activation of the airway smooth muscle (ASM) leading to smooth muscle contraction, important in asthma. This activation is mediated through M2/M3 muscarinic acetylcholine receptors (mAChRs). Muscarinic receptor activity, expressed as [(3)H]QNB binding at plasma membranes from bovine tracheal smooth muscle (BTSM), increased with cGMP and was augmented significantly cGMP plus ATP but diminished with the PKG-II inhibitor, Sp-8-pCPT-cGMPS. The [(3)H]-QNB binding was accelerated by okadaic acid, (OKA), a protein phosphatase (PPase) inhibitor. These two results indicated the involvement of a membrane-bound PPase. Moreover, a cGMP-dependent-[(32)P]γATP phosphorylation of plasma membranes from BTSM was stimulated at low concentrations of muscarinic agonist carbamylcholine (CC). However, higher amounts of CC produced a significant decrement of [(32)P]-labeling. A selective M3mAChR antagonist, 4-DAMP produced a dramatic inhibition of the basal and CC-dependent [(32)P]-labeling. The [(32)P] labeled membrane sediments were detergent solubilized and immunoprecipitated with specific M2/M3mAChR antibodies. The M3mAChR immuno-precipitates exhibited the highest cGMP-dependent [(32)P]-labeling, indicating it is a PKG-II substrate. Experiments using synthetic peptides from the C-terminal of the third intracellular loop (i3) of both M2mAChR (356-369) and M3mAChR (480-493) as external PKG-II substrates resulted in the i3M3-peptide being heavily phosphorylated. These results indicated that PKG-II phosphorylated the M3mAChR at the i3M3 domain ((480)MSLIKEKK(485)), suggesting that Ser(481) may be the target. Finally, this phosphorylation site seems to be regulated by a membrane-bound PPase linked to muscarinic receptor. These findings are important to understand the role of M3mAChR in the patho-physiology of ASM involved in asthma and COPD.
A G protein-coupled natriuretic peptide-guanylyl cyclase receptor-B (NPR-B) located in plasma membranes from bovine tracheal smooth muscle shows complex kinetics and regulation. NPR-B was activated by natriuretic peptides (CNP-53 > ANP-28) at the ligand extracellular domain, stimulated by Gq-protein activators, such as mastoparan, and inhibited by Gi-sensitive chloride, interacting at the juxtamembrane domain. The kinase homology domain was evaluated by the ATP inhibition of Mn2+-activated NPR-B, which was partially reversed by mastoparan. The catalytic domain was studied by kinetics of Mn2+/Mg2+ and GTP, and the catalytic effect with GTP analogues with modifications of the /gamma phosphates and ribose moieties. Most NPR-B biochemical properties remained after detergent solubilization but the mastoparan activation and chloride inhibition of NPR-B disappeared. Our results indicate that NPR-B is a highly regulated nano-machinery with domains acting at cross-talk points with other signal transducing cascades initiated by G protein-coupled receptors and affected by intracellular ligands such as chloride, Mn2+, Mg2+, ATP, and GTP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.