In this work, we propose a method for monitoring and managing rotator-cuff (RC) tendon strains in humanrobot collaborative physical therapy for shoulder rehabilitation. We integrate a high-resolution biomechanical model with a collaborative industrial robot arm and an impedance controller to provide feedback to a human subject, therapist or both, which prevents the subject from entering unsafe poses during rehabilitation. The biomechanical model estimates RC tendon strain as a function of human shoulder configuration, muscle activation and applied external forces. Subject-and injuryspecific data are model estimates of strain that compose strain maps, which capture the relationship between the RC strains and movement of the shoulder degrees of freedom (DoF). Highstrain regions of the strain map are identified as unsafe zones by clustering and ellipse fitting to smoothly demarcate these zones. These unsafe areas, which reflect increased risks of (re-)injury, are used to define parameters of an impedance controller and reference pose for real-time biomechanical safety control. Using strain maps we demonstrate both safe patient-led movements and teleoperated movements that prevent the subject from entering unsafe zones. In the teleoperated case, the physical therapist leads the patient remotely using a haptic device. The proposed method has the potential to improve the safety, range of motion, and volume of activity that a patient receives through robot-mediated physical therapy. We validated our approach using three experiments that demonstrate shoulder joint torques of less than 1 Nm during free motion with larger torques occurring only when the subject was asked to actively push into the unsafe boundary or, in the case of teleoperation, to resist the physical therapist.
This paper presents a trajectory optimization approach to the motion generation problem of hybrid locomotion strategies for a wheeled-legged quadrupedal robot with steerable wheels. To this end, traditional Single Rigid Body Dynamics has been employed and extended by adding a unicycle model for each leg, conveniently incorporating the nonholonomic rolling constraints. The proposed approach can generate hybrid locomotion strategies as well as pure driving and legged locomotion with minimum effort for the user. The effectiveness of the proposed approach has been experimentally validated on the humanoid quadruped CENTAURO, employing a hierarchical inverse kinematics engine to track the planned motions.
The complexity of the human shoulder girdle enables the large mobility of the upper extremity, but also introduces instability of the glenohumeral (GH) joint. Shoulder movements are generated by coordinating large superficial and deeper stabilizing muscles spanning numerous degrees-of-freedom. How shoulder muscles are coordinated to stabilize the movement of the GH joint remains widely unknown. Musculoskeletal simulations are powerful tools to gain insights into the actions of individual muscles and particularly of those that are difficult to measure. In this study, we analyze how enforcement of GH joint stability in a musculoskeletal model affects the estimates of individual muscle activity during shoulder movements. To estimate both muscle activity and GH stability from recorded shoulder movements, we developed a Rapid Muscle Redundancy (RMR) solver to include constraints on joint reaction forces (JRFs) from a musculoskeletal model. The RMR solver yields muscle activations and joint forces by minimizing the weighted sum of squared-activations, while matching experimental motion. We implemented three new features: first, computed muscle forces include active and passive fiber contributions; second, muscle activation rates are enforced to be physiological, and third, JRFs are efficiently formulated as linear functions of activations. Muscle activity from the RMR solver without GH stability was not different from the computed muscle control (CMC) algorithm and electromyography of superficial muscles. The efficiency of the solver enabled us to test 3600 trials sampled within the uncertainty of the experimental movements to test the differences in muscle activity with and without GH joint stability enforced. We found that enforcing GH stability significantly increases the estimated activity of the rotator cuff muscles but not of most superficial muscles. Therefore, a comparison of shoulder model muscle activity to EMG measurements of superficial muscles alone is insufficient to validate the activity of rotator cuff muscles estimated from musculoskeletal models.
This paper proposes a novel method to reliably calibrate a pair of sensorized insoles utilizing an array of capacitive tactile pixels (taxels). A new calibration setup is introduced that is scalable and suitable for multiple kinds of wearable sensors and a procedure for the simultaneous calibration of each of the sensors in the insoles is presented. The calibration relies on a two-step optimization algorithm that, firstly, enables determination of a relevant set of mathematical models based on the instantaneous measurement of the taxels alone, and, then, expands these models to include the relevant portion of the time history of the system. By comparing the resulting models with our previous work on the same hardware, we demonstrate the effectiveness of the novel method both in terms of increased ability to cope with the non-linear characteristics of the sensors and increased pressure ranges achieved during the experiments performed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.