Root systems perform the crucial task of absorbing water from the soil to meet the demands of a transpiring canopy. Roots are thought to operate like electrical fuses, which break when carrying an excessive load under conditions of drought stress. Yet the exact site and sequence of this dysfunction in roots remain elusive. Using in vivo x-ray computed microtomography, we found that drought-induced mechanical failure (i.e. lacunae formation) in fine root cortical cells is the initial and primary driver of reduced fine root hydraulic conductivity (Lp r ) under mild to moderate drought stress. Cortical lacunae started forming under mild drought stress (20.6 MPa C stem ), coincided with a dramatic reduction in Lp r , and preceded root shrinkage or significant xylem embolism. Only under increased drought stress was embolism formation observed in the root xylem, and it appeared first in the fine roots (50% loss of hydraulic conductivity [P 50 ] reached at 21.8 MPa) and then in older, coarse roots (P 50 = 23.5 MPa). These results suggest that cortical cells in fine roots function like hydraulic fuses that decouple plants from drying soil, thus preserving the hydraulic integrity of the plant's vascular system under early stages of drought stress. Cortical lacunae formation led to permanent structural damage of the root cortex and nonrecoverable Lp r , pointing to a role in fine root mortality and turnover under drought stress.
95618 (A.J.M.) Gas embolisms formed during drought can disrupt long-distance water transport through plant xylem vessels, but some species have the ability to remove these blockages. Despite evidence suggesting that embolism removal is linked to the presence of vessel-associated parenchyma, the underlying mechanism remains controversial and is thought to involve positive pressure generated by roots. Here, we used in situ x-ray microtomography on excised grapevine stems to determine if embolism removal is possible without root pressure, and if the embolism formation/removal affects vessel functional status after sample excision. Our data show that embolism removal in excised stems was driven by water droplet growth and was qualitatively identical to refilling in intact plants. When stem segments were rehydrated with H 2 O after excision, vessel refilling occurred rapidly (,1 h). The refilling process was substantially slower when polyethylene glycol was added to the H 2 O source, thereby providing new support for an osmotically driven refilling mechanism. In contrast, segments not supplied with H 2 O showed no refilling and increased embolism formation. Dynamic changes in liquid/wall contact angles indicated that the processes of embolism removal (i.e. vessel refilling) by water influx and embolism formation by water efflux were directly linked to the activity of vesselassociated living tissue. Overall, our results emphasize that root pressure is not required as a driving force for vessel refilling, and care should be taken when performing hydraulics measurements on excised plant organs containing living vessel-associated tissue, because the vessel behavior may not be static.
Water storage is thought to play an integral role in the maintenance of whole-plant water balance. The contribution of both living and dead cells to water storage can be derived from rehydration and water-release curves on excised plant material, but the underlying tissue-specific emptying/refilling dynamics remain unclear. Here, we used x-ray computed microtomography to characterize the refilling of xylem fibers, pith cells, and vessels under both excised and in vivo conditions in In excised stems supplied with water, water uptake exhibited a biphasic response curve, and x-ray computed microtomography images showed that high water storage capacitance was associated with fiber and pith refilling as driven by capillary forces: fibers refilled more rapidly than pith cells, while vessel refilling was minimal. In excised stems that were sealed, fiber and pith refilling was associated with vessel emptying, indicating a link between tissue connectivity and water storage. In contrast, refilling of fibers, pith cells, and vessels was negligible in intact saplings over two time scales, 24 h and 3 weeks. However, those compartments did refill slowly when the shoot was covered to prevent transpiration. Collectively, our data (1) provide direct evidence that storage compartments for capillary water refill in excised stems but rarely under in vivo conditions, (2) highlight that estimates of capacitance from excised samples should be interpreted with caution, as certain storage compartments may not be utilized in the intact plant, and (3) question the paradigm that fibers play a substantial role in daily discharge/recharge of stem capacitance in an intact tree.
Structural changes during severe drought stress greatly modify the hydraulic properties of fine roots. Yet, the physiological basis behind the restoration of fine root water uptake capacity during water recovery remains unknown. Using neutron radiography (NR), X-ray micro-computed tomography (micro-CT), fluorescence microscopy, and fine root hydraulic conductivity measurements (Lp r), we examined how drought-induced changes in anatomy and hydraulic properties of contrasting grapevine rootstocks are coupled with fine root growth dynamics during drought and return of soil moisture. Lacunae formation in drought-stressed fine roots was associated with a significant decrease in fine root Lp r for both rootstocks. However, lacunae formation occurred under milder stress in the drought-resistant rootstock, 110R. Suberin was deposited at an earlier developmental stage in fine roots of 101-14Mgt (i.e. drought susceptible), probably limiting cortical lacunae formation during mild stress. During recovery, we found that only 110R fine roots showed rapid re-establishment of elongation and water uptake capacity and we found that soil water status surrounding root tips differed between rootstocks as imaged with NR. These data suggest that drought resistance in grapevine rootstocks is associated with rapid re-establishment of growth and Lp r near the root tip upon re-watering by limiting competing sites along the root cylinder.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.