The contemporary scientific literature that deals with the dynamics of marine chlorophyll-a concentration is already customarily employing data mining techniques in small geographic areas or regional samples. However, there is little focus on the issue of missing data related to chlorophyll-a concentration estimated by remote sensors. Intending to provide greater scope to the identification of the spatiotemporal distribution patterns of marine chlorophyll-a concentrations, and to improve the reliability of results, this study presents a data mining approach to cluster similar chlorophyll-a concentration behaviors while implementing an iterative spatiotemporal interpolation technique for missing data inference. Although some dynamic behaviors of said concentrations in specific areas are already known by specialists, systematic studies in large geographical areas are still scarce due to the computational complexity involved. For this reason, this study analyzed 18 years of NASA satellite observations in one portion of the Western Atlantic Ocean, totaling more than 60 million records. Additionally, performance tests were carried out in low-cost computer systems to check the accessibility of the proposal implemented for use in computational structures of different sizes. The approach was able to identify patterns with high spatial resolution, accuracy and reliability, rendered in low-cost computers even with large volumes of data, generating new and consistent patterns of spatiotemporal variability. Thus,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.