The genus Alchemilla L., known for its medicinal and ornamental value, is widely distributed in the Holarctic regions with a few species found in Asia and Africa. Delimitation of species within Alchemilla is difficult due to hybridization, autonomous apomixes, and polyploidy, necessitating efficient molecular-based characterization. Herein, we report the initial complete chloroplast (cp) genomes of Alchemilla. The cp genomes of two African (Afromilla) species Alchemilla pedata and Alchemilla argyrophylla were sequenced, and phylogenetic and comparative analyses were conducted in the family Rosaceae. The cp genomes mapped a typical circular quadripartite structure of lengths 152,438 and 152,427 base pairs (bp) in A. pedata and A. argyrophylla, respectively. Alchemilla cp genomes were composed of a pair of inverted repeat regions (IRa/IRb) of length 25,923 and 25,915 bp, separating the small single copy (SSC) region of 17,980 and 17,981 bp and a large single copy (LSC) region of 82,612 and 82,616 bp in A. pedata and A. argyrophylla, respectively. The cp genomes encoded 114 unique genes including 88 protein-coding genes, 37 transfer RNA (tRNA) genes, and 4 ribosomal RNA (rRNA) genes. Additionally, 88 and 95 simple sequence repeats (SSRs) and 37 and 40 tandem repeats were identified in A. pedata and A. argyrophylla, respectively. Significantly, the loss of group II intron in atpF gene in Alchemilla species was detected. Phylogenetic analysis based on 26 whole cp genome sequences and 78 protein-coding gene sequences of 27 Rosaceae species revealed a monophyletic clustering of Alchemilla nested within subfamily Rosoideae. Based on a protein-coding region, negative selective pressure (Ka/Ks < 1) was detected with an average Ka/Ks value of 0.1322 in A. argyrophylla and 0.1418 in A. pedata. The availability of complete cp genome in the genus Alchemilla will contribute to species delineation and further phylogenetic and evolutionary studies in the family Rosaceae.
Transplant studies can provide valuable information on the growth responses of epiphytic bryophytes and lichens to environmental factors. We studied the growth of six epiphyte species at three sites in moist Afromontane forests of Taita Hills, Kenya. With 558 pendant transplants, we documented the growth of four bryophytes and two lichens over 1 yr. The transplants were placed into the lower canopy of one forest site in an upper montane zone, and two forest sites in a lower montane zone. Several pendant moss species grew very well in the cool and humid environment of the upper montane forest, with some transplants more than doubling their biomass during the year. Conversely, all transplanted taxa performed poorly in the lower montane zone, presumably because of the unfavorable combination of ample moisture with excessive warmth and insufficient light which characterizes the lower canopy in dense lower montane forests. The results demonstrate that pendant transplants can be used for monitoring growth of non‐vascular epiphytes in tropical forests. The starting weight of 0.25 g for pendant transplants worked well and can be recommended for future studies.
Based on our recent collections we report 43 moss species as new to the Taita Hills and Mount Kasigau in SE Kenya, 15 of the species being also new to the country. The number of moss species known from the region rises from the previously reported 85 to 128, and from 506 to 521 for the whole country. The most noteworthy findings are Fissidens splendens Brugg.-Nann., previously known only from Tanzania, and Barbella capillicaulis (Renauld & Cardot) Cardot var. capillicaulis (Renauld & Cardot) Cardot, previously reported from Mauritius, Madagascar and Uganda. The taxa reported represent the families Anomodontaceae (1 sp.), Brachytheciaceae (3 spp.), Calymperaceae (3 spp.), Dicranaceae (8 spp.), Erpodiaceae (1 sp.), Fissidentaceae (3 spp.), Hedwigiaceae (1 sp.), Hookeriaceae (1 sp.), Hypnaceae (3 spp.), Leucodontaceae (1 sp.), Meteoriaceae (3 spp.), Neckeraceae (5 spp.), Orthotrichaceae (1 sp.), Pilotrichaceae (1 sp.), Polytrichaceae (1 sp.), Pterigynandraceae (1 sp.), Pterobryaceae (2 spp.), Pylaisiadelphaceae (1 sp.), Sematophyllaceae (1 sp.), Stereophyllaceae (1 sp.), and Thuidiaceae (1 sp.).
Streptocarpus ionanthus (Gesneriaceae) comprise nine herbaceous subspecies, endemic to Kenya and Tanzania. The evolution of Str. ionanthus is perceived as complex due to morphological heterogeneity and unresolved phylogenetic relationships. Our study seeks to understand the molecular variation within Str. ionanthus using a phylogenomic approach. We sequence the chloroplast genomes of five subspecies of Str. ionanthus, compare their structural features and identify divergent regions. The five genomes are identical, with a conserved structure, a narrow size range (170 base pairs (bp)) and 115 unique genes (80 protein-coding, 31 tRNAs and 4 rRNAs). Genome alignment exhibits high synteny while the number of Simple Sequence Repeats (SSRs) are observed to be low (varying from 37 to 41), indicating high similarity. We identify ten divergent regions, including five variable regions (psbM, rps3, atpF-atpH, psbC-psbZ and psaA-ycf3) and five genes with a high number of polymorphic sites (rps16, rpoC2, rpoB, ycf1 and ndhA) which could be investigated further for phylogenetic utility in Str. ionanthus. Phylogenomic analyses here exhibit low polymorphism within Str. ionanthus and poor phylogenetic separation, which might be attributed to recent divergence. The complete chloroplast genome sequence data concerning the five subspecies provides genomic resources which can be expanded for future elucidation of Str. ionanthus phylogenetic relationships.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.