We evaluated the pharmacological profile of ritobegron [KUC-7483; (Ϫ)-ethyl 2-[4-(2-{[(1S,2R)-2-hydroxy-2-(4-hydroxyphenyl)-1-methylethyl]amino}ethyl)-2,5-dimethylphenyloxy]acetate monohydrochloride] and its effects on the bladder in cynomolgus monkeys by in vitro and in vivo experiments. In vitro, ritobegron decreased the resting tension of the isolated bladder in a concentration-dependent manner (EC 50 8.2 Ϯ 2.3 ϫ 10 Ϫ7 M; maximal relaxation 88.7 Ϯ 3.7%). The  3 -adrenoceptor (AR) antagonist 3-(2-allylphenoxy)-1-[(1S)-1,2,3,4-tetrahydronaphth-1-ylamino]-(2S)-2-propanol hydrochloride (SR58894A) produced a rightward shift of this concentration-response curve without altering the maximal response (pK B value 6.56 Ϯ 0.35). In isolated atria, ritobegron increased the atrial rate only at high concentrations (EC 50 6.5 Ϯ 1.2 ϫ 10 Ϫ5 M). Ritobegron had no effect on tracheal contraction at concentrations from 10 Ϫ9 to 10 Ϫ4 M, and even at the highest concentration tested, 10 Ϫ3 M, the maximal relaxation it induced was only 26.7 Ϯ 8.1%. Tests of the selectivity of ritobegron for the bladder gave values of 79.3-and 1200-fold higher versus atria and trachea, respectively. In the in vivo study ritobegron significantly decreased intravesical pressure (ED 50 1.44 mg/kg) without affecting either mean blood pressure or heart rate. In conclusion, ritobegron displayed potent and selective  3 -AR agonistic activity and relaxed the monkey isolated bladder, and in vivo it decreased intravesical pressure without affecting cardiovascular parameters. These results suggest that ritobegron may be a promising potential agent for the treatment of overactive bladder.
We performed in vitro and in vivo experiments to evaluate the pharmacological profile of ritobegron and its effects on the bladder in rats. β(3)-AR selectivity was assessed using CHO cells expressing various subtypes of the human β-adrenoceptor (AR). Effects on isolated organs were evaluated using the organ-bath method. Effects on intravesical pressure, heart rate, and mean blood pressure were evaluated in urethane-anesthetized rats. Ritobegron increased cAMP accumulation in a concentration-dependent manner in CHO cells expressing any one of three human β-AR, its selectivity for β(3)-AR being 301-fold and 32-fold higher versus β(1)-AR and β(2)-AR, respectively. Ritobegron decreased the resting tension of the isolated bladder in a concentration-dependent manner (EC(50), 7.7 × 10(-8) mol/L; maximal relaxation, 97.0 %), and the β(3)-AR antagonist SR58894A produced a parallel rightward-shift of this concentration-response curve without altering the maximal response [pK(B) value, 6.43]. Ritobegron concentration-dependently increased atrial rate and decreased myometrial contractions in vitro, and its selectivity for the bladder was 2,078-fold higher versus the atria and 14-fold higher versus the uterus. In vivo, ritobegron induced a dose-dependent decrease in intravesical pressure (ED(50) 0.4 mg/kg), without affecting heart rate and only slightly lowering mean blood pressure. Thus, ritobegron displayed potent and selective β(3)-AR agonistic activity toward transfected human β-AR and exhibited a high selectivity for the bladder versus other organs in rats. Moreover, it decreased intravesical pressure with minimal effects on the cardiovascular system in anesthetized rats. These results suggest that ritobegron shows promise as a potential agent for the treatment of overactive bladder.
Our results clearly demonstrate that silodosin is a potent and highly selective alpha(1A)-AR antagonist. A selective alpha(1A)-AR antagonist such as silodosin may have good potential as a less-hypotensive drug for the treatment of urinary dysfunction in benign prostatic hyperplasia patients.
Background/Aims: This study was performed to investigate the detailed mechanism underlying the effects of the selective α1A-adrenoceptor antagonist, silodosin, on bladder function in a rat model of atherosclerosis-induced chronic bladder ischemia (CBI). Methods: The CBI model was prepared by balloon endothelial injury of the bilateral iliac arteries in male rats. Using an osmotic pump, the CBI rats received either silodosin or vehicle alone subcutaneously for 8 weeks. Rats received a 2% cholesterol diet throughout the experiment. Bladder blood flow (BBF) was measured. Immunohistochemical staining was performed to determine the nerve distribution and nerve growth factor expression in the bladder. Bladders were used for muscle strip contraction analysis. The expression levels of muscarinic M2 and M3 receptors were measured. Results: Silodosin abrogated the decrease in BBF in CBI rats. Silodosin prevented the decrease in nerve distribution and increase in nerve growth factor expression in the CBI model. Bladder contractile response was reduced in the CBI group. Silodosin ameliorated the effect on the bladder contractile response. The level of muscarinic M3 receptor mRNA present in the bladder of CBI rats was increased by silodosin. Conclusion: The results of this study suggest that silodosin ameliorates the denervation of the bladder and effects on detrusor contractile function under ischemic conditions by restoring BBF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.