Stroke is a leading cause of morbidity and mortality worldwide, and consists of two types, ischemic and hemorrhagic. Currently, there is no effective treatment to increase the survival rate or improve the quality of life after ischemic and hemorrhagic stroke in the subacute to chronic phases. Therefore, it is necessary to establish therapeutic strategies to facilitate functional recovery in patients with stroke during both phases. Cell-based therapies, using microglia and monocytes/macrophages preconditioned by optimal stimuli and/or any therapies targeting these cells, might be an ideal therapeutic strategy for managing stroke. Microglia and monocytes/macrophages polarize to the classic pro-inflammatory type (M1-like) or alternative protective type (M2-like) by optimal condition. Cell-based therapies using M2-like microglia and monocytes/macrophages might be protective therapeutic strategies against stroke for three reasons. First, M2-like microglia and monocytes/monocytes secrete protective remodeling factors, thus prompting neuronal network recovery via tissue (including neuronal) and vascular remodeling. Second, these cells could migrate to the injured hemisphere through the blood–brain barrier or choroid–plexus. Third, these cells could mitigate the extent of inflammation-induced injuries by suitable timing of therapeutic intervention. Although future translational studies are required, M2-like microglia and monocytes/macrophages therapies are attractive for managing stroke based on their protective functions.
Increased microvessel density in the peri-infarct region has been reported and has been correlated with longer survival times in ischemic stroke patients and has improved outcomes in ischemic animal models. This raises the possibility that enhancement of angiogenesis is one of the strategies to facilitate functional recovery after ischemic stroke. Blood vessels and neuronal cells communicate with each other using various mediators and contribute to the pathophysiology of cerebral ischemia as a unit. In this mini-review, we discuss how angiogenesis might couple with axonal outgrowth/neurogenesis and work for functional recovery after cerebral ischemia. Angiogenesis occurs within 4 to 7 days after cerebral ischemia in the border of the ischemic core and periphery. Post-ischemic angiogenesis may contribute to neuronal remodeling in at least two ways and is thought to contribute to functional recovery. First, new blood vessels that are formed after ischemia are thought to have a role in the guidance of sprouting axons by vascular endothelial growth factor and laminin/β1-integrin signaling. Second, blood vessels are thought to enhance neurogenesis in three stages: 1) Blood vessels enhance proliferation of neural stem/progenitor cells by expression of several extracellular signals, 2) microvessels support the migration of neural stem/progenitor cells toward the peri-infarct region by supplying oxygen, nutrients, and soluble factors as well as serving as a scaffold for migration, and 3) oxygenation induced by angiogenesis in the ischemic core is thought to facilitate the differentiation of migrated neural stem/progenitor cells into mature neurons. Thus, the regions of angiogenesis and surrounding tissue may be coupled, representing novel treatment targets.
cell therapies that invoke pleiotropic mechanisms may facilitate functional recovery in patients with stroke. Based on previous experiments using microglia preconditioned by oxygen-glucose deprivation, we hypothesized that the administration of peripheral blood mononuclear cells (pBMcs) preconditioned by oxygen-glucose deprivation (oGD-pBMcs) to be a therapeutic strategy for ischemic stroke. Here, OGD-PBMCs were identified to secrete remodelling factors, including the vascular endothelial growth factor and transforming growth factor-β in vitro, while intra-arterial administration of oGD-pBMcs at 7 days after focal cerebral ischemia prompted expression of such factors in the brain parenchyma at 28 days following focal cerebral ischemia in vivo. furthermore, administration of oGD-pBMcs induced an increasing number of stage-specific embryonic antigen-3-positive cells both in vitro and in vivo. finally, it was found to prompt angiogenesis and axonal outgrowth, and functional recovery after cerebral ischemia. in conclusion, the administration of oGD-pBMcs might be a novel therapeutic strategy against ischemic stroke.
Stroke remains a major cause of serious disability because the brain has a limited capacity to regenerate. In the last two decades, therapies for stroke have dramatically changed. However, half of the patients cannot achieve functional independence after treatment. Presently, cell-based therapies are being investigated to improve functional outcomes. This review aims to describe conventional cell therapies under clinical trial and outline the novel concept of polarized cell therapies based on protective cell phenotypes, which are currently in pre-clinical studies, to facilitate functional recovery after post-reperfusion treatment in patients with ischemic stroke. In particular, non-neuronal stem cells, such as bone marrow-derived mesenchymal stem/stromal cells and mononuclear cells, confer no risk of tumorigenesis and are safe because they do not induce rejection and allergy; they also pose no ethical issues. Therefore, recent studies have focused on them as a cell source for cell therapies. Some clinical trials have shown beneficial therapeutic effects of bone marrow-derived cells in this regard, whereas others have shown no such effects. Therefore, more clinical trials must be performed to reach a conclusion. Polarized microglia or peripheral blood mononuclear cells might provide promising therapeutic strategies after stroke because they have pleiotropic effects. In traumatic injuries and neurodegenerative diseases, astrocytes, neutrophils, and T cells were polarized to the protective phenotype in pre-clinical studies. As such, they might be useful therapeutic targets. Polarized cell therapies are gaining attention in the treatment of stroke and neurological diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.