Abstract. Unlike the standard notion of pseudorandom functions (PRF), a non-adaptive PRF is only required to be indistinguishable from random in the eyes of a non-adaptive distinguisher (i.e., one that prepares its oracle calls in advance). A recent line of research has studied the possibility of a direct construction of adaptive PRFs from non-adaptive ones, where direct means that the constructed adaptive PRF uses only few (ideally, constant number of) calls to the underlying non-adaptive PRF. Unfortunately, this study has only yielded negative results, showing that "natural" such constructions are unlikely to exist (e.g., Myers [EUROCRYPT '04], Pietrzak [CRYPTO '05, EUROCRYPT '06]).We give an affirmative answer to the above question, presenting a direct construction of adaptive PRFs from non-adaptive ones. Our construction is extremely simple, a composition of the non-adaptive PRF with an appropriate pairwise independent hash function.
We show that the existence of a coin-flipping protocol safe against any non-trivial constant bias (e.g., .499) implies the existence of one-way functions. This improves upon a recent result of Haitner and Omri [FOCS '11], who proved this implication for protocols with bias √ 2−1 2 − o(1) ≈ .207. Unlike the result of Haitner and Omri, our result also holds for w eak coin-flipping protocols.
Unlike the standard notion of pseudorandom functions (PRF), a non-adaptive PRF is only required to be indistinguishable from a random function in the eyes of a non-adaptive distinguisher (i.e., one that prepares its oracle calls in advance). A recent line of research has studied the possibility of a direct construction of adaptive PRFs from non-adaptive ones, where direct means that the constructed adaptive PRF uses only few (ideally, constant number of) calls to the underlying non-adaptive PRF. Unfortunately, this study has only yielded negative results, showing that "natural" such constructions are unlikely to exist (e.g., Myers [EUROCRYPT '04], Pietrzak [CRYPTO '05, EUROCRYPT '06]).We give an affirmative answer to the above question, presenting a direct construction of adaptive PRFs from non-adaptive ones. The suggested construction is extremely simple, a composition of the non-adaptive PRF with an appropriate pairwise independent hash function.
The focus of this work is hardness-preserving transformations of somewhat limited pseudorandom functions families (PRFs) into ones with more versatile characteristics. Consider the problem of domain extension of pseudorandom functions: given a PRF that takes as input elements of some domain U, we would like to come up with a PRF over a larger domain. Can we do it with little work and without significantly impacting the security of the system? One approach is to first hash the larger domain into the smaller one and then apply the original PRF. Such a reduction, however, is vulnerable to a "birthday attack": after |U| queries to the resulting PRF, a collision (i.e., two distinct inputs having the same hash value) is very likely to occur. As a consequence, the resulting PRF is insecure against an attacker making this number of queries.In this work we show how to go beyond the aforementioned birthday attack barrier by replacing the above simple hashing approach with a variant of cuckoo hashing, a hashing paradigm that resolves collisions in a table by using two hash functions and two tables, cleverly assigning each element to one of the two tables. We use this approach to obtain: (i) a domain extension method that requires just two calls to the original PRF, can withstand as many queries as the original domain size, and has a distinguishing probability that is exponentially small in the amount of non-cryptographic work; and (ii) a security-preserving reduction from non-adaptive to adaptive PRFs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.