In multidomain proteins, interdomain linkers allow an efficient transfer of regulatory information, although it is unclear how the information encoded in the linker structure coins dynamic coupling. Allosteric regulation of NCX proteins involves Ca(2+)-driven tethering of regulatory CBD1 and CBD2 (through a salt bridge network) accompanied by alignment of CBDs and Ca(2+) occlusion at the interface of the two CBDs. Here we investigated "alanine-walk" substitutions in the CBD1-CBD2 linker (501-HAGIFT-506) and found that among all linker residues, only G503 is obligatory for Ca(2+)-induced reorientations of CBDs and slow dissociation of occluded Ca(2+). Moreover, swapping between positions A502 and G503 in the CBD1-CBD2 linker results in a complete loss of slow dissociation of occluded Ca(2+), meaning that dynamic coupling of CBDs requires an exact pose of glycine at position 503. Therefore, accumulating data revealed that position 503 occupied by glycine is absolutely required for Ca(2+)-driven tethering of CBDs, which in turn limits the linker's flexibility and, thus, restricts CBD movements. Because G503 is extremely well conserved in eukaryotic NCX proteins, the information encoded in G503 is essential for dynamic coupling of the two-domain CBD tandem and, thus, for propagation of the allosteric signal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.