The detection of similarities in source code has applications not only in software re-engineering (to eliminate redundancies) but also in software plagiarism detection. This latter can be a challenging problem since more or less extensive edits may have been performed on the original copy: insertion or removal of useless chunks of code, rewriting of expressions, transposition of code, inlining and outlining of functions, etc. In this paper, we propose a new similarity detection technique not only based on token sequence matching but also on the factorization of the function call graphs. The factorization process merges shared chunks (factors) of codes to cope, in particular, with inlining and outlining. The resulting call graph offers a view of the similarities with their nesting relations. It is useful to infer metrics quantifying similarity at a function level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.