Early reports on the formation of the higher fullerenes C(76), C(78), C(84), C(90), and C(94) by resistive heating of graphite stimulated theoretical calculations of possible cage structures for these all-carbon molecules. Among the five fullerene structures with isolated pentagons found for C(78), a closed-shell D3h-isomer was predicted to form preferentially. Two distinct C(78)-isomers were formed in a ratio of approximately 5:1 and could be separated by high-performance liquid chromatography. The carbon-13 nuclear magnetic resonance (NMR) spectrum of the major isomer is uniquely consistent with a C2v-structure. The NMR data also support a chiral D(3)-structure for the minor isomer. The isolation of specifically these two isomers of C(78) provides insight into the stability of higher fullerene structures and into the mechanism for fullerene formation in general.
The theoretical work presented here demonstrates that, when substitution takes place at appropriate positions, cyanation could be a useful tool for reducing the internal reorganization energy of molecules. A molecular-orbital-based explanation is given for this fundamentally important phenomenon. Some of the cyanated pentacene derivatives (nCN-PENT-n) not only have internal reorganization energies for electron transfer (lambda(-)) smaller than that of pentacene, but the lambda(-) values are even of the same magnitude as the internal reorganization energy for hole transfer (lambda(+)) of pentacene, a small value that few organic compounds have surpassed. In addition, cyanation raises the electron affinity of the parent compound and may afford good electronic couplings between neighboring molecules, because of its ability in promoting pi-stacking. For the design of high performance n-Type Organic field-effect transistors, high electron affinities, large intermolecular electronic couplings, and small reorganization energies are necessary. Cyanation may help in all three aspects. Two cyanated trialkylsilylethynyl pentacene derivatives with known pi-stacking structures are predicted to provide reasonably small internal reorganization energies, large electronic couplings, and high electron affinities. They have the potential to outperform N-fluoroalkylated dicyanoperylene-3,4:9,10-bis(dicarboximides) (PDI-FCN(2)) in terms of electron mobility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.