To test whether growth limitation induces mutations, Cairns and Foster constructed an Escherichia coli strain whose mutant lac allele provides 1–2% of normal ability to use lactose. This strain cannot grow on lactose, but produces ∼50 Lac+ revertant colonies per 108 plated cells over 5 days. About 80% of revertants carry a stable lac+ mutation made by the error-prone DinB polymerase, which may be induced during growth limitation; 10% of Lac+ revertants are stable but form without DinB; and the remaining 10% grow by amplifying their mutant lac allele and are unstably Lac+. Induced DinB mutagenesis has been explained in two ways: (1) upregulation of dinB expression in nongrowing cells (“stress-induced mutagenesis”) or (2) selected local overreplication of the lac and dinB+ genes on lactose medium (selected amplification) in cells that are not dividing. Transcription of dinB is necessary but not sufficient for mutagenesis. Evidence is presented that DinB enhances reversion only when encoded somewhere on the F’lac plasmid that carries the mutant lac gene. A new model will propose that rare preexisting cells (1 in a 1000) have ∼10 copies of the F’lac plasmid, providing them with enough energy to divide, mate, and overreplicate their F’lac plasmid under selective conditions. In these clones, repeated replication of F’lac in nondividing cells directs opportunities for lac reversion and increases the copy number of the dinB+ gene. Amplification of dinB+ increases the error rate of replication and increases the number of lac+ revertants. Thus, reversion is enhanced in nondividing cells not by stress-induced mutagenesis, but by selected coamplification of the dinB and lac genes, both of which happen to lie on the F’lac plasmid.
The Escherichia coli system of Cairns and Foster employs a lac frameshift mutation that reverts rarely (10−9/cell/division) during unrestricted growth. However, when 108 cells are plated on lactose medium, the nongrowing lawn produces ∼50 Lac+ revertant colonies that accumulate linearly with time over 5 days. Revertants carry very few associated mutations. This behavior has been attributed to an evolved mechanism (“adaptive mutation” or “stress-induced mutagenesis”) that responds to starvation by preferentially creating mutations that improve growth. We describe an alternative model, “selective inbreeding,” in which natural selection acts during intercellular transfer of the plasmid that carries the mutant lac allele and the dinB gene for an error-prone polymerase. Revertant genome sequences show that the plasmid is more intensely mutagenized than the chromosome. Revertants vary widely in their number of plasmid and chromosomal mutations. Plasmid mutations are distributed evenly, but chromosomal mutations are focused near the replication origin. Rare, heavily mutagenized, revertants have acquired a plasmid tra mutation that eliminates conjugation ability. These findings support the new model, in which revertants are initiated by rare pre-existing cells (105) with many copies of the F’lac plasmid. These cells divide under selection, producing daughters that mate. Recombination between donor and recipient plasmids initiates rolling-circle plasmid over-replication, causing a mutagenic elevation of DinB level. A lac+ reversion event starts chromosome replication and mutagenesis by accumulated DinB. After reversion, plasmid transfer moves the revertant lac+ allele into an unmutagenized cell, and away from associated mutations. Thus, natural selection explains why mutagenesis appears stress-induced and directed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.