SUMMARYOur previous study indicated that the interleukin (IL)-6/STAT-3 signal was up-regulated in inflammatory bowel disease (IBD) in both humans and animal models. We also discovered phosphorylated STAT-3 in the nucleus of the colonic epithelial cells in IBD mice. Intestinal epithelial cells (IEC) have been shown to secrete IL-6. Therefore, the secretion of IL-6 from IEC may be one of the mechanisms of STAT-3 phosphorylation in IEC during the pathogenesis of IBD, and inhibition of IL-6 production by IEC may be beneficial in preventing IBD. We examined the preventative effect of various types of fucoidans on IL-6 production in a lipopolysaccahride (LPS)-stimulated murine colonic epithelial cells line, CMT-93, in vitro . We also determined in vivo the effect of fucoidans on murine chronic colitis induced with dextran sodium sulphate. Among fucoidans, those from Cladosiphon okamuranus Tokida and Kjellmaniella crassifolia inhibited IL-6 production in CMT-93 cells with the down-regulation of NFk B nuclear translocation. Analysis of the effect of fucoidan on murine colitis in vivo showed that the disease activity index and myeloperoxidase activity decreased in mice fed Cladosiphon fucoidan, but not Fucus fucoidan. Cytokine profiles in colonic lamina propria indicated that the synthesis of interferon (IFN)-g and IL-6 decreased and that of IL-10 and transforming growth factor (TGF)-b increased in mice fed Cladosiphon fucoidan, compared with mice fed a standard diet or Fucus fucoidan. The levels of IL-6 mRNA in colonic epithelial cells was lower in colitis-induced Balb/c mice fed Cladosiphon fucoidan than those fed a standard diet. Fucoidan improves murine chronic colitis by down-regulating the synthesis of IL-6 in the colonic epithelial cells. Fucoidan derived from C. o. Tokida may be useful as a dietary substance for the patients with inflammatory bowel disease.
SummaryWe studied the inhibitory effect of Cladosiphon fucoidan on the attachment of Helicobacter pylori (H. pylori), a gastroduodenal pathogen, to human gastric cell lines. The bacterial binding in these cell lines was inhibited more by Cladosiphon fucoidan (IC50=16-30mg/mL), than by the fucoidan from Fucus (IC50>30mg/mL). Dextran sulfate, another sulfated polysaccharide, did not inhibit the binding at all. Pre-incubating the bacterial suspension with fucoidans reinforced the inhibitory ability of these components, and reduced the IC50 value of Cladosiphon fucoidan to approximately 1mg/mL. However, the binding was not inhibited by pre-treatment of gastric cells with these com ponents. It was also shown that this fucoidan blocks both Leb and sulfatide-mediated attachment of H. pylori to gastric cells. Furthermore, fucoidan-binding proteins were found on the H. pylori cell surface by Western blot analysis. Thus, the inhibitory effect exerted by Cladosiphon fucoidan on binding between H. pylori and gastric cells might result from the coating with this component of the bacterial surface.
A structural study was carried out on a fucoidan isolated from the brown seaweed Cladosiphon okamuranus. The polysaccharide contained fucose, glucuronic acid and sulfate in a molar ratio of about 6.1 : 1.0 : 2.9. The results of Smith degradation showed that this polysaccharide has a linear backbone of 1-->3-linked alpha-fucopyranose with a half sulfate substitution at the 4-positions, and a portion of the fucose residues was O-acetylated. The data obtained from partial acid hydrolysis, a methylation analysis and NMR spectra indicated that the alpha-glucuronic acid residue is linked to the 2-positions of the fucose residues, which were not substituted by a sulfate group. These results indicated that the average structure of this fucoidan is as follows: -[(-->3Fuc-4(+/-OSO3-)alpha1-)5-->3[GlcA alpha1-->2]Fuc alpha1-]n-. (Half of each fucose residue was sulfated. One O-acetyl ester was present in every 6 fucose residues.)
Background Annexin A1 is expressed specifically on the tumour vasculature surface. Intravenously injected IF7 targets tumour vasculature via annexin A1. We tested the hypothesis that IF7 overcomes the blood–brain barrier and that the intravenously injected IF7C(RR)-SN38 eradicates brain tumours in the mouse. Methods (1) A dual-tumour model was generated by inoculating luciferase-expressing melanoma B16 cell line, B16-Luc, into the brain and under the skin of syngeneic C57BL/6 mice. IF7C(RR)-SN38 was injected intravenously daily at 7.0 μmoles/kg and growth of tumours was assessed by chemiluminescence using an IVIS imager. A similar dual-tumour model was generated with the C6-Luc line in immunocompromised SCID mice. (2) IF7C(RR)-SN38 formulated with 10% Solutol HS15 was injected intravenously daily at 2.5 μmoles/kg into two brain tumour mouse models: B16-Luc cells in C57BL/6 mice, and C6-Luc cells in nude mice. Results (1) Daily IF7C(RR)-SN38 injection suppressed tumour growth regardless of cell lines or mouse strains. (2) Daily injection of Solutol-formulated IF7C(RR)-SN38 led into complete disappearance of B16-Luc brain tumour in C57BL/6 mice, whereas this did not occur in C6-Luc in nude mice. Conclusions IF7C(RR)-SN38 crosses the blood–brain barrier and suppresses growth of brain tumours in mouse models. Solutol HS15-formulated IF7C(RR)-SN38 may have promoted an antitumour immune response.
To elucidate the anti-ulcer potential of Cladosiphon fucoidan, anti-peptic activity, bFGF stabilizing activity and inflammatory properties of this and related substances were investigated. Anti-peptic activity was observed with this and other sulfated polysaccharides such as dextran sulfate, carrageenan, and Fucus fucoidan. However, non-sulfated polysaccharides such as mannan and dextran did not exert the anti-peptic activity. The loss of bFGF bioactivity was prevented by all sulfated polysaccharides tested except chondroitin sulfate, at pH 7.4 and at pH 4.0. At pH 2.0, only heparin protected the bFGF activity. The generation of superoxide by macrophages and PMNs was stimulated by dextran sulfate, carrageenan, and Fucus fucoidan, whereas Cladosiphon fucoidan, heparin and chondroitin did not. Dextran sulfate, carrageenan, and Fucus fucoidan also stimulated the secretion of TNFalpha from macrophages, while Cladosiphon fucoidan did not. Thus, Cladosiphon fucoidan is a sulfated polysaccharide without inflammatory action. These results suggest that Cladosiphon fucoidan is a safe substance with potential for gastric protection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.