In diesel-dual-fuel engine, CNG is injected at the intake ports and diesel fuel is injected at the cylinders. As a result of using CNG as main fuel, smaller amount of diesel is used mainly for ignition, resulting in lower fuel cost. However, stricter air path control is required because the engine now operates partly as a port fuel injection engine and partly as a diesel engine. As is evident from engine calibration, desired MAP and MAF have more abrupt change with wider range than those of diesel engine. In typical commercial truck, MAP and MAF are controlled separately using traditional controller such as PID with marginal control performance. Recently, more researchers have combined the control of MAP and MAF together as multivariable problem because both quantities reflect the behavior of the air path. In this paper, multivariable sliding mode control (SMC) is implemented in two-approaches, a model-reference-based and an integrator-augmented based. The diesel-dual-fuel engine was converted from a diesel engine and used in the engine test bed. Throttle and EGR valve were actuated to regulate MAP and MAF at their respective set points. Experimental results at an engine speed of 2000 rpm and 20% pedal showed that the two proposed algorithms delivered good tracking performance with fast action. The MAP and MAF responses were able to track their desired values with 2.5 seconds settling time and less than 10% overshoot. The integrator-augmented SMC had more response accuracy than the model-reference SMC but with more chattering.
Input shaping suppresses residual vibration by destructive interference of the impulse responses. Because proper destructive interference requires superposition property of the linear system, traditional input shaper only applies to the linear flexible system. In this paper, the work and energy principle is used to derive input shaper for flexible system having nonlinear spring and damper. It was shown via simulation and experiment that this type of shaper performs well with nonlinear systems. Positive, robust, and negative input shapers are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.