Serological assays can detect anti-SARS-CoV-2 (SARS2) antibodies, but their sensitivity often comes at the expense of specificity. Here we developed a Tripartite Automated Blood Immunoassay (TRABI) to assess the IgG response against SARS2. Calibration was per-formed with 90 prepandemic and 55 virologically and clinically confirmed COVID-19 sam-ples. Posterior probabilities of seropositivities were calculated from 3x8 measurements of logarithmically diluted samples against the ectodomain and the receptor-binding domain of the spike protein and the nucleoprotein. We then performed 760'320 assays on 5'503 prepandemic and 26'177 copandemic samples from hospital patients and healthy blood donors. We found 176 seropositive samples between December 2019 and May 2020. The seroprevalence increased conspicuously in March 2020 but plateaued in late April at 0.8-1.6% in both cohorts, indicating an equilibrium between new infections and the waning of immunity. This points to a high effectiveness of containment measures and/or to unex-pectedly rapid loss of humoral responses.
The clinical outcome of SARS-CoV-2 infections, which can range from asymptomatic to lethal, is crucially shaped by the concentration of antiviral antibodies and by their affinity to their targets. However, the affinity of polyclonal antibody responses in plasma is difficult to measure. Here we used microfluidic antibody affinity profiling (MAAP) to determine the aggregate affinities and concentrations of anti–SARS-CoV-2 antibodies in plasma samples of 42 seropositive individuals, 19 of which were healthy donors, 20 displayed mild symptoms, and 3 were critically ill. We found that dissociation constants, Kd, of anti–receptor-binding domain antibodies spanned 2.5 orders of magnitude from sub-nanomolar to 43 nM. Using MAAP we found that antibodies of seropositive individuals induced the dissociation of pre-formed spike-ACE2 receptor complexes, which indicates that MAAP can be adapted as a complementary receptor competition assay. By comparison with cytopathic effect–based neutralisation assays, we show that MAAP can reliably predict the cellular neutralisation ability of sera, which may be an important consideration when selecting the most effective samples for therapeutic plasmapheresis and tracking the success of vaccinations.
Prions consist of pathological assemblies of normal cellular prion protein and cause infectious neurodegenerative diseases, a phenomenon mirrored in many other prion-like neurodegenerative diseases. However, despite their key importance in disease, the individual processes governing this formation of pathogenic aggregates, as well as their rates, have remained challenging to elucidate in vivo. Here we bring together a mathematical framework with kinetics of the accumulation of prions in mice and microfluidic mea-
The clinical outcome of SARS-CoV-2 infections can range from asymptomatic to lethal, and is thought to be crucially shaped by the quality of the immune response which includes antibody titres and affinity for their targets. Using Microfluidic Antibody Affinity Profiling (MAAP), we determined the aggregate affinities and concentrations of anti-SARS-CoV-2 antibodies in plasma samples of 42 seropositive individuals, 23 of whom were confirmed to be SARS-CoV-2-positive by PCR testing. We found that dissociation constants (Kd) of anti-RBD antibodies spanned more than two orders of magnitude from 80 pM to 25 nM, despite having similar antibody concentrations. Individual patients showed progressively higher antibody concentrations but constant Kd values, suggesting that affinities did not mature over time. 33 sera showed affinities higher than that of the CoV2 spike for its ACE2 receptor. Accordingly, addition of seropositive plasma to pre-formed spike-ACE2 receptor complexes led to their dissociation. Finally, we observed that the RBD of HKU1, OC43, and SARS-CoV coronaviruses, but not unrelated control proteins, were able to compete substantially with the RBD of SARS-CoV-2 in solution. Therefore, the affinity of total plasma immunoglobulins to SARS-CoV-2 is an indicator of the quality of the immune response to SARS-CoV-2, and may help select the most efficacious samples for therapeutic plasmapheresis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.