Background Alzheimer’s disease (AD) is a neuropathology strongly associated with the activation of inflammatory pathways. Accordingly, inflammation resulting from obesity exacerbates learning and memory deficits in humans and in animal models of AD. Consequently, the long-term use of non-steroidal anti-inflammatory agents diminishes the risk for developing AD, but the side effects produced by these drugs limit their prophylactic use. Thus, plants natural products have become an excellent option for modern therapeutics. Malva parviflora is a plant well known for its anti-inflammatory properties. Methods The present study was aimed to determine the anti-inflammatory potential of M . parviflora leaf hydroalcoholic extract (MpHE) on AD pathology in lean and obese transgenic 5XFAD mice, a model of familial AD. The inflammatory response and Amyloid β (Aβ) plaque load in lean and obese 5XFAD mice untreated or treated with MpHE was evaluated by immunolocalization (Iba-1 and GFAP) and RT-qPCR (TNF) assays and thioflavin-S staining, respectively. Spatial learning memory was assessed by the Morris Water Maze behavioral test. Microglia phagocytosis capacity was analyzed in vivo and by ex vivo and in vitro assays, and its activation by morphological changes (phalloidin staining) and expression of CD86, Mgl1, and TREM-2 by RT-qPCR. The mechanism triggered by the MpHE was characterized in microglia primary cultures and ex vivo assays by immunoblot (PPAR-γ) and RT-qPCR (CD36) and in vivo by flow cytometry, using GW9662 (PPAR-γ inhibitor) and pioglitazone (PPAR-γ agonist). The presence of bioactive compounds in the MpHE was determined by HPLC. Results MpHE efficiently reduced astrogliosis, the presence of insoluble Aβ peptides in the hippocampus and spatial learning impairments, of both, lean, and obese 5XFAD mice. This was accompanied by microglial cells accumulation around Aβ plaques in the cortex and the hippocampus and decreased expression of M1 inflammatory markers. Consistent with the fact that the MpHE rescued microglia phagocytic capacity via a PPAR-γ/CD36-dependent mechanism, the MpHE possess oleanolic acid and scopoletin as active phytochemicals. Conclusions M . parviflora suppresses neuroinflammation by inhibiting microglia pro-inflammatory M1 phenotype and promoting microglia phagocytosis. Therefore, M . parviflora phytochemicals represent an alternative to prevent cognitive impairment associated with a metabolic disorder as well as an effective prophylactic candidate for AD progression. Electronic supplementary material The online version of this article (10.1186/s12974-019-1515-3) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.