New adenosine derivatives have been synthesized and tested as putative agonists of adenosine receptors. Compounds 2-6 derive from the introduction of several types of substituents (electron donating, electron withdrawing, and halogens) in the para-position of the phenyl ring of the parent compound 1, and compound 7 lacks the hydroxyl group of amino alcohol 1. In radioligand binding assays using recombinant human A(1), A(2A), A(2B), and A(3) receptors, all compounds showed very low or negligible affinity for A(1) and A(2B) receptors but compounds 3, 5, and 7 displayed a remarkably potent affinity for the A(2A) receptor with K(i) values of 1-5 nM. Bromo derivative 3 displayed a selectivity A(1)/A(2A) = 62 and A(3)/A(2A) = 16 whereas the presence of a hydroxyl group (compound 5) improved the selectivity of A(1)/A(2A) and A(3)/A(2A) to 120- and 28-fold, respectively. When the methoxy derivative 4 lacks the hydroxyl group on the side chain (compound 7), the binding affinity for A(2A) is increased to 1 nM, improving selectivity ratios to 356- and 100-fold against A(1) and A(3), respectively. In Chinese hamster ovary cells transfected with human A(2A) and A(2B) receptors, most compounds showed a remarkable activity for the A(2A) receptor, except chloro derivative 2, with EC(50) values ranging from 1.4 to 8.8 nM. The compounds behaved as good A(2A) agonists, and all were more selective than 5'-(N-ethylcarboxamino)adenosine (NECA), with A(2B)/A(2A) ratios of cAMP accumulation ranging from 48 for compound 2 to 666 for compound 7 while the corresponding A(2B)/A(2A) ratio for NECA was only 9. Compounds 1, 3, 5, and 7 also displayed higher selectivities than NECA up to 100-fold in isolated aortas of rat and guinea pig. In guinea pig tracheal rings precontracted by carbachol, compounds 2 and 4 were more potent than adenosine (100-fold) and NECA (10-fold), whereas compounds 1 and 7 displayed similar effects to NECA. Pretreatment of the tracheal rings with A(2), A(2A), and A(2B) receptor antagonists 3,7-dimethyl-l-propargylxanthine, 8-(3-chlorostyryl)caffeine, and alloxazine produced a marked inhibition of the tracheal relaxations induced by compounds 1, 2, and 4, but none of the compounds showed selectivity toward any of the adenosine receptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.