At high concentrations, glutamate (Glu) exerts potent neurotoxic properties, leading to irreversible brain damages found in numerous neurological disorders. The accepted notion that Glu homeostasis in brain interstitial fluid is maintained primarily through the activity of Glu transporters present on glial cells does not take into account the possible contribution of endothelial cells constituting the blood-brain barrier (BBB) to this process. Here, we present evidence for the presence of the Glu transporters, excitatory amino-acid transporters (EAATs) 1 to 3, in porcine brain endothelial cells (PBECs) and show their participation in Glu uptake into PBECs. Moreover, transport of Glu across three in vitro models of the BBB is investigated for the first time, and evidence for Glu transport across the BBB in both directions is presented. Our results provide evidence that the BBB can function in the efflux mode to selectively remove Glu, via specific transporters, from the abluminal side (brain) into the luminal compartment (blood). Furthermore, we found that glial cells lining the BBB have an active role in the efflux process by taking up Glu and releasing it, through hemichannels, anion channels, and possibly the reversal of its EAATs, in close proximity to ECs, which in turn take up Glu and release it to the blood.
SummaryThere is growing evidence of the involvement of advanced glycation end products (AGEs) in the pathogenesis of neurodegenerative processes including Alzheimer's disease (AD) and their function as a seed for the aggregation of Aβ, a hallmark feature of AD. AGEs are formed endogenously and exogenously during heating and irradiation of foods. We here examined the effect of a diet high in AGEs in the context of an irradiated diet on memory, insoluble Aβ42, AGEs levels in hippocampus, on expression of the receptor for AGEs (RAGE), and on oxidative stress in the vasculature. We found that AD‐like model mice on high‐AGE diet due to irradiation had significantly poorer memory, higher hippocampal levels of insoluble Aβ42 and AGEs as well as higher levels of oxidative stress on vascular walls, compared to littermates fed an isocaloric diet. These differences were not due to weight gain. The data were further supported by the overexpression of RAGE, which binds to Aβ42 and regulates its transport across the blood–brain barrier, suggesting a mediating pathway. Because exposure to AGEs can be diminished, these insights provide an important simple noninvasive potential therapeutic strategy for alleviating a major lifestyle‐linked disease epidemic.
Background
Excessive inflammation might activate and injure the blood-brain barrier (BBB), a common feature of many central nervous system (CNS) disorders. We previously developed an in vitro BBB injury model in which the organophosphate paraoxon (PX) affects the BBB endothelium by attenuating junctional protein expression leading to weakened barrier integrity. The objective of this study was to investigate the inflammatory cellular response at the BBB to elucidate critical pathways that might lead to effective treatment in CNS pathologies in which the BBB is compromised. We hypothesized that caspase-1, a core component of the inflammasome complex, might have important role in BBB function since accumulating evidence indicates its involvement in brain inflammation and pathophysiology.
Methods
An in vitro human BBB model was employed to investigate BBB functions related to inflammation, primarily adhesion and transmigration of peripheral blood mononuclear cells (PBMCs). Caspase-1 pathway was studied by measurements of its activation state and its role in PBMCs adhesion, transmigration, and BBB permeability were investigated using the specific caspase-1 inhibitor, VX-765. Expression level of adhesion and junctional molecules and the secretion of pro-inflammatory cytokines were measured in vitro and in vivo at the BBB endothelium after exposure to PX. The potential repair effect of blocking caspase-1 and downstream molecules was evaluated by immunocytochemistry, ELISA, and Nanostring technology.
Results
PX affected the BBB in vitro by elevating the expression of the adhesion molecules E-selectin and ICAM-1 leading to increased adhesion of PBMCs to endothelial monolayer, followed by elevated transendothelial-migration which was ICAM-1 and LFA-1 dependent. Blocking caspase-8 and 9 rescued the viability of the endothelial cells but not the elevated transmigration of PBMCs. Inhibition of caspase-1, on the other hand, robustly restored all of barrier insults tested including PBMCs adhesion and transmigration, permeability, and VE-cadherin protein levels. The in vitro inflammatory response induced by PX and the role of caspase-1 in BBB injury were corroborated in vivo in isolated blood vessels from hippocampi of mice exposed to PX and treated with VX-765.
Conclusions
These results shed light on the important role of caspase-1 in BBB insult in general and specifically in the inflamed endothelium, and suggest therapeutic potential for various CNS disorders, by targeting caspase-1 in the injured BBB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.