In the search for new materials and concepts in materials science, metallo-organic hybrids are attractive candidates; they can combine the rich diversity of organic molecules with the advantages of metals. Transition metals such as palladium are widely applied in catalysis, and small organic molecules such as those in the cinchona alkaloid family can control the stereochemistry of a number of organic reactions. Here, we show that reducing a metal salt in the presence of a cinchona alkaloid dopant gives a chirally imprinted metallo-organic hybrid material that is catalytically active and shows moderate enantioselectivity in hydrogenation. Furthermore, using photoelectron emission spectroscopy, we show that the metal retains some chiral character even after extraction of the dopant. This simple and effective methodology opens exciting opportunities for developing a variety of chiral composite materials.
A novel family of composite materials, organically doped metals, has been recently introduced. Here, we demonstrate their use as a new platform for heterogeneous catalysis, namely the doping of a metal with a catalytic organometallic complex. Specifically, a rhodium(I) catalyst, (RhCl(COD)(Ph2P(C6H4SO3Na))), ([Rh]), was physically entrapped within silver, thus creating a new type of catalytic material: [Rh]@Ag. Several aspects were demonstrated with the development of this heterogeneous catalyst: a metal can be used as a support for heterogenizing a homogeneous catalyst; the homogeneous catalyst is stabilized by the entrapment within the metal; the products of the composite catalyst are different compared to those obtained from the homogeneous one; and the adsorption of [Rh] on the surface of Ag and its entrapment are very different processes only the latter provided appreciable catalytic activity. Thus, while homogeneous [Rh] was entirely destroyed after converting styrene to ethylbenzne at 50%, [Rh]@Ag remained active after effecting the same reaction to a yield of 85% (compared to only 7% for [Rh] adsorbed on Ag), and while homogeneous [Rh] hydrogenated diphenylacetylene to bibenzyl (and was completely deactivated after one cycle) with no trace of cis-stilbene, [Rh]@Ag afforded that compound as the main product and could be reused.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.