The present paper examines the effects of salt stress on the growth, pigments, lipid peroxidation and antioxidant ability of barley (Hordeum vulgare L.) seedlings raised from proton beam irradiated caryopses. In order to assess the effects of radiation on the early stages of plant growth and analyze its possible influence on the alleviation of salinity, 3 and 5 Gy doses were used on dried barley seeds and germination occurred in the presence/absence of NaCl (100 mM and 200 mM). After treatment, photosynthetic pigments increased in the 5 Gy variant, which registered a higher value than the control. Among the antioxidant enzymes studied (SOD, CAT, and POD) only CAT activity increased in proton beam irradiated seeds germinated under salinity conditions, which indicates the activation of antioxidant defense. The malondialdehyde (MDA) content declined with the increase of irradiation doses on seeds germinated at 200 mM NaCl. On the other hand, the concentration of 200 mM NaCl applied alone or combined with radiation revealed an increase in soluble protein content. The growth rate suggests that 3 Gy proton beam irradiation of barley seeds can alleviate the harmful effects of 100 mM NaCl salinity, given that seedlings’ growth rate increased by 1.95% compared to the control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.