High-throughput experimentation (HTE) has revolutionized the pharmaceutical industry, most notably allowing for rapid screening of compound libraries against therapeutic targets. The past decade has also witnessed the extension of HTE principles toward the realm of small-molecule process chemistry. Today, most major pharmaceutical companies have created dedicated HTE groups within their process development teams, invested in automation technology to accelerate screening, or both. The industry's commitment to accelerating process development has led to rapid innovations in the HTE space. This review will deliver an overview of the latest best practices currently taking place within our teams in process chemistry by sharing frequently studied transformations, our perspective for the next several years in the field, and manual and automated tools to enable experimentation. A series of case studies are presented to exemplify state-of-the-art workflows developed within our laboratories.
An efficient aerobic linear allylic C—H amination reaction (LAA) is reported under Pd(II)/bis-sulfoxide/Brønsted base catalysis. The reaction operates under preparative, operationally simple conditions (1 equiv. olefin, 1 atm. O2 or air), with reduced Pd(II)/bis-sulfoxide catalyst loadings while providing higher turnovers and product yields than systems employing stoichiometric benzoquinone (BQ) as the terminal oxidant. Palladium(II)/benzoquinone π-acidic interactions have been invoked in various catalytic processes and are often considered beneficial in promoting reductive functionalizations. When such electrophilic activation for functionalization is not needed, however, benzoquinone at high concentrations may compete with crucial ligand (bis-sulfoxide) binding and inhibit catalysis. Kinetic studies reveal an inverse relationship between the reaction rate and the concentration of BQ, suggesting that benzoquinone is acting as a ligand for Pd(II) which results in an inhibitory effect on catalysis.
The divergent synthesis of syn-1, 2-aminoalcohol or syn-1,2-diamine precursors from a common terminal olefin has been accomplished using a combination of palladium(II) catalysis with Lewis acid co-catalysis. Palladium(II)/bis-sulfoxide catalysis with a silver triflate co-catalyst leads for the first time to anti-2-aminooxazolines (C—O) in good to excellent yields. Simple removal of the bis-sulfoxide ligand from this reaction results in a complete switch in reactivity to afford anti-imidazolidinone products (C—N) in good yields and excellent diastereoselectivities. Mechanistic studies suggest the divergent C—O versus C—N reactivity from a common ambident nucleophile arises due to a switch in mechanism from allylic C—H cleavage/functionalization to olefin isomerization/oxidative amination.
A platform
to accelerate optimization of proteolysis targeting
chimeras (PROTACs) has been developed using a direct-to-biology (D2B)
approach with a focus on linker effects. A large number of linker
analogs—with varying length, polarity, and rigidity—were
rapidly prepared and characterized in four cell-based assays by streamlining
time-consuming steps in synthesis and purification. The expansive
dataset informs on linker structure–activity relationships
(SAR) for in-cell E3 ligase target engagement, degradation, permeability,
and cell toxicity. Unexpected aspects of linker SAR was discovered,
consistent with literature reports on “linkerology”,
and the method dramatically speeds up empirical optimization. Physicochemical
property trends emerged, and the platform has the potential to rapidly
expand training sets for more complex prediction models. In-depth
validation studies were carried out and confirm the D2B platform is
a valuable tool to accelerate PROTAC design–make–test
cycles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.