The ecology of West Nile virus (WNV) in the Danube Delta Biosphere Reserve (Romania) was investigated by combining studies on the virus genetics, phylogeography, xenosurveillance and host-feeding patterns of mosquitoes. Between 2014 and 2016, 655,667 unfed and 3842 engorged mosquito females were collected from four sampling sites. Blood-fed mosquitoes were negative for WNV-RNA, but two pools of unfed Culex pipiens s.l./torrentium collected in 2014 were tested positive. Our results suggest that Romania experienced at least two separate WNV lineage 2 introductions: from Africa into Danube Delta and from Greece into south-eastern Romania in the 1990s and early 2000s, respectively. The genetic diversity of WNV in Romania is primarily shaped by in situ evolution. WNV-specific antibodies were detected for 19 blood-meals from dogs and horses, but not from birds or humans. The hosts of mosquitoes were dominated by non-human mammals (19 species), followed by human and birds (23 species). Thereby, the catholic host-feeding pattern of Culex pipiens s.l./torrentium with a relatively high proportion of birds indicates the species’ importance as a potential bridge vector. The low virus prevalence in combination with WNV-specific antibodies indicate continuous, but low activity of WNV in the Danube Delta during the study period.
The discovery and characterization of novel arthropod-borne viruses provide valuable information on their genetic diversity, ecology, evolution and potential to threaten animal or public health. Arbovirus surveillance is not conducted regularly in Romania, being particularly very scarce in the remote and diverse areas like the Danube Delta. Here we describe the detection and genetic characterization of a novel orbivirus (Reoviridae: Orbivirus) designated as Letea virus, which was found in grass snakes (Natrix natrix) during a metagenomic and metatranscriptomic survey conducted between 2014 and 2017. This virus is the first orbivirus discovered in reptiles. Phylogenetic analyses placed Letea virus as a highly divergent species in the Culicoides-/sand fly-borne orbivirus clade. Gene reassortment and intragenic recombination were detected in the majority of the nine Letea virus strains obtained, implying that these mechanisms play important roles in the evolution and diversification of the virus. However, the screening of arthropods, including Culicoides biting midges collected within the same surveillance program, tested negative for Letea virus infection and could not confirm the arthropod vector of the virus. The study provided complete genome sequences for nine Letea virus strains and new information about orbivirus diversity, host range, ecology and evolution. The phylogenetic associations warrant further screening of arthropods, as well as sustained surveillance efforts for elucidation of Letea virus natural cycle and possible implications for animal and human health.
BackgroundDirofilariosis is an emerging vector-borne parasitic disease in Europe. Monitoring of wild and domestic carnivores demonstrated circulation of Dirofilaria spp. in Romania in the past. For the implementation of control measures, knowledge on the native mosquito community responsible for Dirofilaria spp. transmission is required.MethodsMosquito samples originated from a longitudinal study previously performed in the Danube Delta Biosphere Reserve. Mosquito pools were screened for Dirofilaria immitis and Dirofilaria repens. The samples comprised 240,572 female mosquito specimens collected every ten days between April and September in 2014 at four different trapping sites. In addition, blood samples of 36 randomly selected dogs were collected in 2016 in each of the four mosquito sampling sites. A duplex real-time assay was used to detect the presence of one or both Dirofilaria species for each sample. This assay targets the cytochrome c oxidase subunit 1 and the 16S rRNA gene fragments to differentiate both parasites.ResultsDirofilaria immitis and D. repens were detected in mosquito pools at all four trapping sites. In the 2118 mosquito pools tested, D. immitis was identified for eight and D. repens for six of the 14 screened mosquito taxa, with a higher prevalence of D. immitis (4.53% of analysed pools) compared to D. repens (1.09%). Dirofilaria spp. were also identified in dogs from the same sampling sites with a prevalence of 30.56%. For both Dirofilaria species, the highest estimated infection rates (EIRs) were found in Anopheles maculipennis (s.l.) (D. immitis: EIR = 0.206 per 100 specimens, D. repens: EIR = 0.066 per 100 specimens). In contrast, Coquillettidia richiardii and Anopheles hyrcanus as the most frequent taxa had infection rates which were significantly lower: Cq. richiardii (D. immitis: EIR = 0.021; D. repens: EIR = 0.004); An. hyrcanus (D. immitis: EIR = 0.028; D. repens: EIR = 0.006). The number of positive pools per calendar week was positively correlated with the number of screened pools per calendar week, suggesting constant Dirofilaria spp. transmission during the observation period.ConclusionsThis study further confirms significant circulation of Dirofilaria spp. in eastern Europe, with high parasite prevalence in domestic canids and mosquitoes. Therefore, systematic monitoring studies are required to better understand the environmental risk factors for Dirofilaria transmission, allowing the implementation of effective surveillance and control measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.