The interactions of bovine serum albumin (BSA) with ionic surfactants (sodium dodecyl sulfate, SDS, and cetyltrimethylammonium bromide, CTAB) and β-cyclodextrin (β-CD) have been investigated by electron paramagnetic resonance (EPR) and circular dichroism measurements. The spin probe selected to report on the interaction of albumin with surfactants and/or β-CD was 4-N,N-dimethyl hexadecyl ammonium-2,2,6,6-tetramethylpiperidine-1-oxyl iodide (CAT16), on account of (a) its balance between electrostatic and hydrophobic character and (b) the ability of BSA to form complexes with various organic molecules. The distribution of the spin probe among different environments in solutions containing only BSA was confirmed by the existence of two components in the EPR spectra: one revealing a restricted mobility of the spin probe, attributed to the protein-spin probe complex, and another one showing free movement, attributed to the spin probe in solution. The presence of surfactants and/or β-CD alters the distribution of CAT16 between various compartments in each system. Formation of protein aggregates as a result of thermal denaturation was evidenced by the appearance of an immobilized component in the EPR spectrum. This component is not present in the EPR spectra of CAT16 in protein/surfactant or protein/cyclodextrin solutions. Circular dichroism spectra of BSA provided information about changes in the secondary structure of the protein induced by the presence of surfactants and/or cyclodextrin in solution. The results demonstrate that β-CD hinders the interaction between the employed surfactants and the protein. The cationic surfactant (CTAB) induces changes in protein conformation at a lower concentration compared to the anionic surfactant (SDS).
Three new binuclear helicates, [M2L2]·3DMF (M = Co(II), 1, Zn(II), 3) and [Cu2L2]·DMF·0.4H2O (2), have been assembled using the helicand H2L that results from the 2:1 condensation reaction between o-vanillin and 4,4'-diaminodiphenyl ether. The metal ions within the binuclear helicates are tetracoordinated with a distorted tetrahedral geometry. Direct current magnetic characterization and EPR spectroscopy of the Co(II) derivative point to an easy axis type anisotropy for both Co(II) centers, with a separation of at least 55 K between the two doublets. Dynamic susceptibility measurements evidence slow relaxation of the magnetization in an applied dc field. Since the distance between the cobalt ions is quite large (11.59 Å), this is attributed in a first instance to the intrinsic properties of each Co(II) center (single-ion magnet behavior). However, the temperature dependence of the relaxation rate and the absence of slow dynamics in the Zn(II)-doped sample suggest that neither the simple Orbach mechanism nor Raman or direct processes can account for the relaxation, and collective phenomena have to be invoked for the observed behavior. Finally, due to the rigidization of the two organic ligands upon coordination, the pure zinc derivative exhibits fluorescence emission in solution, which was analyzed in terms of fluorescence quantum yields and lifetimes.
The formation and growth of gold nanoparticles (AuNPs) were investigated in pH 7 buffer solution of bovine serum albumin (BSA) at room temperature. The processes were monitored by UV-Vis, circular dichroism, Raman and electron paramagnetic resonance (EPR) spectroscopies. TEM microscopy and dynamic light scattering (DLS) measurements were used to evidence changes in particle size during nanoparticle formation and growth. The formation of AuNPs at pH 7 in the absence of BSA was not observed, which proves that the albumin is involved in the first step of Au(III) reduction. Changes in the EPR spectral features of two spin probes, CAT16 and DIS3, with affinity for BSA and AuNPs, respectively, allowed us to monitor the particle growth and to demonstrate the protective role of BSA for AuNPs. The size of AuNPs formed in BSA solution increases slowly with time, resulting in nanoparticles of different morphologies, as revealed by TEM. Raman spectra of BSA indicate the interaction of albumin with AuNPs through sulfur-containing amino acid residues. This study shows that albumins act as both reducing agents and protective corona of AuNPs.
The interaction of human serum albumin (HSA) with amphiphilic block copolymer Pluronic F127 has been investigated by several physical methods. Interest in studying this system stems from a broad range of bioactivities involving both macromolecules. Serum albumins constitute a significant class of proteins in the circulatory system, acting as carriers for a wide spectrum of compounds or assemblies. Pluronic block copolymers have revealed their capacity to ferry a variety of biologically active compounds. Circular dichroism, rheological measurements, and differential scanning microcalorimetry (μDSC) were employed to get insight into the interaction betweeen the two macromolecules. The results reveal that Pluronic F127 induces conformational changes to albumin if it is organized in a micellar form, while albumin influences the self-assembly of Pluronic F127 into micelles or gels. F127 micelles, however, induce smaller conformational changes compared to ionic surfactants. The μDSC thermograms obtained for HSA and/or F127 show that HSA shifts the critical micellar temperature (cmt) to lower values, while concurrently the HSA denaturation behavior is influenced by F127, depending on its concentration. Rheological measurements on solutions of F127 17% have shown that a sol-to-gel transition occurs at higher temperatures in the presence of HSA and the resulting gel is weaker. The global profile on HSA/F127 systems was complemented by local information provided by EPR measurements. A series of X-band EPR experiments was performed with spin probes 4-(N,N'-dimethyl-N-hexadecyl)ammonium-2,2',6,6'-tetramethylpiperidine-1-oxyl iodide (CAT16) and 5-doxyl stearic acid (5-DSA). These spin probes bind to albumin sites and are sensitive to phase transformations in Pluronic block copolymer solutions. For a given F127 concentration, the spin probe binds only to HSA below cmt and migrates to the F127 micelles above cmt. The collective data suggest soft interactions between the macromolecules, with the emerging results projecting potential applications linked to reaching optimal conditions for certain drug formulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.