A new possible method to produce a transdermal patch is proposed in this paper. The study refers to the pulsed laser deposition method (PLD) applied on turmeric target in order to obtain thin layers. Under high power laser irradiation of 532 nm wavelength, thin films containing curcuminoids were obtained on different substrates such as glass and quartz (laboratory investigation) and hemp fabric (practical application). Compared FTIR, SEM-EDS and LIF analyses proved that the obtained thin film chemical composition is mainly demethoxycurcumin and bisdemethoxycurcumin which is evidence that most of the curcumin from turmeric has been demethixylated during laser ablation. Silanol groups with known role into dermal reconstruction are evidenced in both turmeric target and curcuminoid thin films. UV–VIS reflection spectra show the same characteristics for all the curcuminoid thin films, indicating that the method is reproducible. The method proves to be successful for producing a composite material, namely curcuminoid transdermal patch with silanol groups, using directly turmeric as target in the thin film deposited by pulsed laser technique. Double layered patch curcuminoid—silver was produced under this study, proving compatibility between the two deposited layers. The silver layer added on curcuminoid-silanol layer aimed to increase antiseptic properties to the transdermal patch.
High-power laser irradiation interaction with natural polymers in biocomposites and Laser-Induced Chitin Deacetylation (LICD) was studied in this work, in order to produce thin films consisting of chitosan composite. The new method can lead to a cutting-edge technology, as a response to the concern regarding the accumulation of “natural biological waste” and its use. The process consists of high-power laser irradiation applied on oyster shells as the target and deposition of the ablated material on different substrates. The obtained thin films we analyzed by FTIR, UV-VIS and LIF spectroscopy, as well as SEM-EDS and AFM. All the results indicated that chitin was extracted from the shell composite material and converted to chitosan by deacetylation. It was, thus, evidenced that chemical transformation in the chitin polymer side-chain occurs during laser irradiation of the oyster shell and in the resulted plasma plume of ablation. The numerical simulation in COMSOL performed for this study anticipates and confirms the experimental results of chitin deacetylation, also providing information about the conditions required for the physico-chemical processes involved. The high sorption properties of the thin films obtained by a LICD procedure is evidenced in the study. This quality suggests that they should be used in transdermal patch construction due to the known hemostatic and antibacterial effects of chitosan. The resulting composite materials, consisting of the chitosan thin films deposited on hemp fabric, are also suitable for micro-filters in water decontamination or in other filtering processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.