Thermal oil recovery is a special technique belonging to Enhanced Oil Recovery (EOR) methods and includes steam flooding, cyclic steam stimulation, and in-situ combustion (fire flooding) applied especially in the heavy oil reservoirs. Starting 1970 in-situ combustion (ISC) process has been successfully applied continuously in the Suplacu de Barcau oil field, currently this one representing the most important reservoir operated by ISC in the world. Suplacu de Barcau field is a shallow clastic Pliocene, heavy oil reservoir, located in the North-Western Romania and geologically belonging to Eastern Pannonian Basin. The ISC process are operated using a linear combustion front propagated downstructure. The maximum oil production was recorded in 1985 when the total air injection rate has reached maximum values. Cyclic steam stimulation has been continuously applied as support for the ISC process and it had a significant contribution in the oil production rates. Nowadays the oil recovery factor it’s over 55 percent but significant potential has left. In the paper are presented the important moments in the life-time production of the oil field, such as production history, monitoring of the combustion process, technical challenges and their solving solutions, and scientific achievements revealed by many studies performed on the impact of the ISC process in the oil reservoir.
The use of surfactants in the process of water separation from crude oil emulsions formed at extraction is an effective solution in the treatment of crude oil. But perfecting this technology to a higher degree of efficiency, in order to destabilize the emulsion formed, requires the determination of the parameters involved in the design and the correlation of the obtained results. This research also aims at finding optimal solutions that increase the degree of water separation from emulsions using surface-effective solutions to destabilize the emulsion layer. This research was basedon data from two wells that extract oil from Barc�u reservoir. To achieve this objective, the composition of crude oil was analyzed, the emulsion characteristics were established and the elected demulsifiers were tested. The study highlights the efficiency of destabilization up to 97.9 mass %.
This paper presents the application of the hydraulic fracturing method in Romania, exemplified by three case studies. In the current conditions in which the oil and gas prices have risen above the limit of affordability, Romania, one of the few producers in Europe, is trying to solve the problems that have arisen through various methods, which are as follows: offshore drilling, gas underground storage, field rehabilitation and increasing the efficiency of applied technologies. The application of hydraulic fracturing is a safe process, with minimal environmental implications and certain economic benefits. The important thing is to have the necessary energy now, in the desired quantities and with minimal expenses. The authors sought to include key issues in the application of this technology in Romania. The scientific literature on this topic has helped us to interpret the data from the field in difficult situations and were a real support in our activity. We need to provide energy support and energy security and we do not have a lot of resources. Under these conditions, the reactivation of existing deposits and the extension of the production period are essential elements. The authors designed the fracturing technologies. The data corresponding to the geological structure obtained through geological investigations, and the database corresponding to the analyzed wells from the company’s data archive were the elements used in the simulation programs. Thus, the values in the fracturing area about pore fluid permeability, layers stress, Young’s modulus of the structure and fracture toughness were established. The fluids for the fracturing operation and the proppant were chosen for each case, in accordance with the geological recommendations, by our team. Testing of the fracturing technologies for different variants of the pumping program was carried out using the Fracpro program. The variants presented in this article are some of the best solutions found. We used the step-by-step flow test to find the fracture expansion pressure and closing pressure for each case. The mini-frac program established corrections to the designed technologies during the operation quickly and with reduced costs. The designed technologies allowed us to anticipate the necessary flows and pressure, leading to the choice of equipment. The fracture operations were performed only after the projected technologies anticipated the economic benefits covering the investments for the use of the equipment and the operation itself. Knowing the measured pressure of the well and the conditions of communication with the gas/oil reservoir, a simulation of the gas/oil production that could be obtained was made with the simulator. Two situations were exemplified for a gas well and an oil well. The field production results for a two-year interval are also indicated for these wells and a comparison was made with the estimated production.
During current times, it is acknowledged that there is the often presence of extreme meteorological phenomena including floods and landslides, due to heavy rains, large wildfires, due to heat or droughts, permafrost melting, etc. At this stage, the world admits that anthropic activities have an important impact on these phenomena and considers that greenhouse gases are at the core of this climate change. The most common greenhouse gasses have general formulae COX and/or NOX, and they are released during different energy generating/conversion processes such as electric energy generation from fossil fuels or mechanical energy obtained from by-products of fossil fuels. Once acknowledged, the world’s countries have developed long-term strategies to eliminate gradually the release of these gases directly into Earth’s atmosphere. E.g., the EU aims to be climate-neutral by 2050; i.e., its economy will have net-zero greenhouse gas emissions. For this to happen, different effective methodologies have been drafted and implemented with underground gas storage in hydrocarbon depleted geological formations and/or saline aquifers being ones of significance when it comes to electric energy generation from fossil fuels in controlled spaces. The paper presents the simulation of capturing and injecting of these greenhouse gases through injection wells in neighboring depleted natural gas reservoirs using commercial numerical simulators for the Iernut natural gas (CH4) burning power plant which is one of Romania’s most important gas plants. Within this simulation study, the total CO2 quantity that can be stored via the proposed carbon capture and sequestration study and the proportion of each of the three CO2 storage mechanisms involved in the process (physical trapping, hydrodynamic trapping, and geochemical trapping) were determined and presented. Even though previous local studies investigated the potential of CO2 storage and sequestration into the Romanian underground reservoirs, none of it considered using the depleted hydrocarbon reservoirs surrounding the Iernut power plant for this process.
"During the standard pumping of an oil well, the sucker rods are subjective to alternative stress (tensile and compression). Certain steel grades have different behavior, taking into consideration their mechanical properties, like tensile strength. While most operators consider that, the higher the ultimate tensile strength (UTS) of a material is, it will behave better when subjected to loads. This paperwork shows that, comparing three different steel grades, they may have different results on the Goodman diagram, than expected. We are going to show that, even the steel grades have the same tensile strength (115 ksi), when calculating the %Goodman, the steel have different behavior, and this results from the manipulation of coefficients “A” and “b” involved in the formula, that each sucker rods manufacturer validates. "
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.