Despite their good biocompatibility and adequate mechanical behavior, the main limitation of Mg alloys might be their high degradation rates in a physiological environment. In this study, a novel Mg-based alloy exhibiting an elastic modulus E = 42 GPa, Mg-1Ca-0.2Mn-0.6Zr, was synthesized and thermo-mechanically processed. In order to improve its performance as a temporary bone implant, a coating based on cellulose acetate (CA) was realized by using the dipping method. The formation of the polymer coating was demonstrated by FT-IR, XPS, SEM and corrosion behavior comparative analyses of both uncoated and CA-coated alloys. The potentiodynamic polarization test revealed that the CA coating significantly improved the corrosion resistance of the Mg alloy. Using a series of in vitro and in vivo experiments, the biocompatibility of both groups of biomaterials was assessed. In vitro experiments demonstrated that the media containing their extracts showed good cytocompatibility on MC3T3-E1 pre-osteoblasts in terms of cell adhesion and spreading, viability, proliferation and osteogenic differentiation. In vivo studies conducted in rats revealed that the intramedullary coated implant for fixation of femur fracture was more efficient in inducing bone regeneration than the uncoated one. In this manner, the present study suggests that the CA-coated Mg-based alloy holds promise for orthopedic aplications.
Onchocerca lupi is a filarial nematode, which infects the scleral conjunctival tissue of dogs, wolves and cats. Whilst adult nematodes localize in the conjunctive tissue of sclera or in the retrobulbar, microfilariae are found in the skin, and they are rarely diagnosed in asymptomatic animals. Since the first report of human ocular infection 5 years ago, up to 10 zoonotic cases have been identified in patients worldwide. We report, for the first time in Romania, three cases of canine ocular onchocercosis in dogs. Fragments of the harvested worms were characterized morphologically and molecularly. This article expands knowledge on the distribution of this parasite in Eastern Europe and sounds an alarm bell for ophthalmologists about the possible occurrence of human cases of O. lupi infection.
Due to their superior mechanical and chemical properties, titanium (Ti) and its alloys have been widely used as orthopedic implantable devices. However, their bioinertness represents a limitation, which can be overcome by employing various surface modifications, such as TiO2 nanotube (TNT) fabrication via electrochemical anodization. Anodic TNTs present tunable dimensions and unique structures, turning them into feasible drug delivery platforms. In the present work, TNTs were loaded with icariin (Ica) through an adhesive intermediate layer of polydopamine (DP), and their in vitro and in vivo biological performance was evaluated. The successful fabrication of the modified surfaces was verified by scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), and contact angle measurements (CA), while the in vitro release of Ica was evaluated via UV-VIS spectrophotometry. In terms of in vitro behaviour, comparative studies on RAW 264.7 macrophages demonstrated that the TNT substrates, especially TNT-DP-Ica, elicited a lower inflammatory response compared to the Ti support. Moreover, the in vivo implantation studies evinced generation of a reduced fibrotic capsule around this implant and increased thickness of the newly formed bone tissue at 1 month and 3 months post-implantation, respectively. Overall, our results indicate that the controlled release of Ica from TNT surfaces could result in an improved osseointegration process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.