Room temperature magnetic skyrmions in magnetic multilayers are considered as information carriers for future spintronic applications. Currently, a detailed understanding of the skyrmion stabilization mechanisms is still lacking in these systems. To gain more insight, it is first and foremost essential to determine the full real‐space spin configuration. Here, two advanced X‐ray techniques are applied, based on magnetic circular dichroism, to investigate the spin textures of skyrmions in [Ta/CoFeB/MgO]n multilayers. First, by using ptychography, a high‐resolution diffraction imaging technique, the 2D out‐of‐plane spin profile of skyrmions with a spatial resolution of 10 nm is determined. Second, by performing circular dichroism in resonant elastic X‐ray scattering, it is demonstrated that the chirality of the magnetic structure undergoes a depth‐dependent evolution. This suggests that the skyrmion structure is a complex 3D structure rather than an identical planar texture throughout the layer stack. The analyses of the spin textures confirm the theoretical predictions that the dipole–dipole interactions together with the external magnetic field play an important role in stabilizing sub‐100 nm diameter skyrmions and the hybrid structure of the skyrmion domain wall. This combined X‐ray‐based approach opens the door for in‐depth studies of magnetic skyrmion systems, which allows for precise engineering of optimized skyrmion heterostructures.
In the emerging field of magnonics, spin waves are foreseen as signal carriers for future spintronic information processing and communication devices, owing to both the very low power losses and a high device miniaturization potential predicted for short-wavelength spin waves. Yet, the efficient excitation and controlled propagation of nanoscale spin waves remains a severe challenge. Here, we report the observation of high-amplitude, ultrashort dipole-exchange spin waves (down to 80 nm wavelength at 10 GHz frequency) in a ferromagnetic single layer system, coherently excited by the driven dynamics of a spin vortex core. We used time-resolved x-ray microscopy to directly image such propagating spin waves and their excitation over a wide range of frequencies. By further analysis, we found that these waves exhibit a heterosymmetric mode profile, involving regions with anti-Larmor precession sense and purely linear magnetic oscillation. In particular, this mode profile consists of dynamic vortices with laterally alternating helicity, leading to a partial magnetic flux closure over the film thickness, which is explained by a strong and unexpected mode hybridization. This spin-wave phenomenon observed is a general effect inherent to the dynamics of sufficiently thick ferromagnetic single layer films, independent of the specific excitation method employed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.