Fabrication of single crystals has long been limited to melt-and solution-growth techniques. However, in recent years solid-state single crystal growth (SSCG) has appeared as a promising alternative to the conventional techniques due to its cost-effectiveness and simplicity in terms of processing. Moreover, the SSCG technique has enabled the fabrication of single crystals with complex chemical compositions and even incongruent melting behavior. A recently proposed mechanism of grain boundary migration known as the "mixed control mechanism" and the associated principles of microstructural evolution represent the basis of the SSCG technique. The mixed control mechanism has been successfully used to control the key aspects of the SSCG technique, which are the grain growth and the development of the microstructure during the conversion process of the single crystal from the polycrystalline matrix. This paper explains in brief basis of the mixed control mechanism and the underlying principles of microstructural evolution in polycrystalline materials and provides a comprehensive overview of the most recent research on single crystal materials fabricated via the solid-state single crystal growth technique and their properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.