Soil salinity is severely affecting crop productivity in many countries, particularly in the Mediterranean area. To evaluate early plant responses to increased salinity and characterize tolerance markers, three important Brassica crops – Chinese cabbage ( Brassica rapa ssp. pekinensis ), white cabbage ( B. oleracea var. capitata ) and kale ( B. oleracea var. acephala ) were subjected to short-term (24 h) salt stress by exposing them to NaCl at concentrations of 50, 100, or 200 mM. Physiological (root growth, photosynthetic performance parameters, and Na + /K + ratio) and biochemical parameters (proline content and lipid peroxidation as indicated by malondialdehyde, MDA, levels) in the plants’ roots and leaves were then measured. Photosynthetic parameters such as the total performance index PI total (describing the overall efficiency of PSI, PSII and the intersystem electron transport chain) appeared to be the most salinity-sensitive parameter and informative stress marker. This parameter was decreased more strongly in Chinese cabbage than in white cabbage and kale. It indicated that salinity reduced the capacity of the photosynthetic system for efficient energy conversion, particularly in Chinese cabbage. In parallel with the photosynthetic impairments, the Na + /K + ratio was highest in Chinese cabbage leaves and lowest in kale leaves while kale root is able to keep high Na + /K + ratio without a significant increase in MDA. Thus Na + /K + ratio, high in root and low in leaves accompanying with low MDA level is an informative marker of salinity tolerance. The crops’ tolerance was positively correlated with levels of the stress hormone abscisic acid (ABA) and negatively correlated with levels of jasmonic acid (JA), and jasmonoyl-L-isoleucine (JA-Ile). Furthermore, salinity induced contrasting changes in levels of the growth-promoting hormones brassinosteroids (BRs). The crop’s tolerance was positively correlated with levels of BR precursor typhasterol while negatively with the active BR brassinolide. Principal Component Analysis revealed correlations in observed changes in phytohormones, biochemical, and physiological parameters. Overall, the results show that kale is the most tolerant of the three species and Chinese cabbage the most sensitive to salt stress, and provide holistic indications of the spectrum of tolerance mechanisms involved.
Drought is one of the major abiotic stresses affecting the productivity of Brassica crops. To understand the role of phytohormones in drought tolerance, we subjected Chinese cabbage (B. rapa ssp. pekinensis), white cabbage (B. oleracea var. capitata), and kale (B. oleracea var. acephala) to drought and examined the stress response on the physiological, biochemical and hormonal levels. The phytohormones abscisic acid (ABA), auxin indole-3-acetic acid (IAA), brassinosteroids (BRs), cytokinins (CKs), jasmonates (JAs), and salicylic acid (SA) were analyzed by ultra-high-performance liquid chromatography–tandem mass spectrometry (UHPLC-MS/MS). Based on the physiological and biochemical markers the Chinese cabbage exhibited the lowest tolerance, followed by the white cabbage, while the kale appeared to be the most tolerant to drought. The drought tolerance of the kale correlated with increased levels of SA, ABA, IAA, CKs iP(R) and cZ(R), and typhasterol (TY), a precursor of active BRs. In contrast, the drought sensitivity of the Chinese cabbage correlated with a significant increase in ABA, JAs and the active BRs castasterol (CS) and brassinolide (BL). The moderately tolerant white cabbage, positioned between the kale and Chinese cabbage, showed more similarity in terms of the phytohormone patterns with the kale. We concluded that the drought tolerance in Brassicaceae is mostly determined by the increased endogenous levels of IAA, CKs, ABA and SA and the decreased levels of active BRs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.